16 research outputs found

    Effective Soft-Core Potentials and Mesoscopic Simulations of Binary Polymer Mixtures

    Full text link
    Mesoscopic molecular dynamics simulations are used to determine the large scale structure of several binary polymer mixtures of various chemical architecture, concentration, and thermodynamic conditions. By implementing an analytical formalism, which is based on the solution to the Ornstein-Zernike equation, each polymer chain is mapped onto the level of a single soft colloid. From the appropriate closure relation, the effective, soft-core potential between coarse-grained units is obtained and used as input to our mesoscale simulations. The potential derived in this manner is analytical and explicitly parameter dependent, making it general and transferable to numerous systems of interest. From computer simulations performed under various thermodynamic conditions the structure of the polymer mixture, through pair correlation functions, is determined over the entire miscible region of the phase diagram. In the athermal regime mesoscale simulations exhibit quantitative agreement with united atom simulations. Furthermore, they also provide information at larger scales than can be attained by united atom simulations and in the thermal regime approaching the phase transition.Comment: 19 pages, 11 figures, 3 table

    Ordered arrays of multiferroic epitaxial nanostructures

    Get PDF
    Epitaxial heterostructures combining ferroelectric (FE) and ferromagnetic (FiM) oxides are a possible route to explore coupling mechanisms between the two independent order parameters, polarization and magnetization of the component phases. We report on the fabrication and properties of arrays of hybrid epitaxial nanostructures of FiM NiFe2O4 (NFO) and FE PbZr0.52Ti0.48O3 or PbZr0.2Ti0.8O3, with large range order and lateral dimensions from 200 nm to 1 micron

    Effect of computational methodology on the conformational dynamics of the protein photosensor LOV1 from Chlamydomonas reinhardtii

    No full text
    LOV domains are the light-sensitive protein domains of plant phototropins and bacteria. They photochemically form a covalent bond between a flavin mononucleotide (FMN) chromophore and a cysteine, attached to the apo-protein, upon irradiation with blue light, which triggers a signal in the adjacent kinase. Although their signaling state has been well characterized through experimental means, their signal transduction pathway as well as dark-state activity are generally only poorly understood. Here we show results from molecular dynamics simulations where we investigated the effect of thermostating and long-range electrostatics on the solution structure and dynamical behavior of the wild-type LOV1 domain from the green algae Chlamydomonas reinhardtii in the dark. We demonstrate that these computational issues can dramatically affect the conformational fluctuations of such protein domains by suppressing configurations far from equilibrium or destabilizing local configurations, leading to artificial changes of the protein secondary structure as well as the H-bond network formed by the amino acids and the FMN. By comparing our calculation results with recent experimental data, we show that the non-invasive thermostating strategy, where the protein solute is only indirectly coupled to the thermostat via the solvent, in conjunction with the particle-mesh Ewald technique, provides dark-state conformers, which are in consistency with experimental observations. Moreover, our calculations indicate that the LOV1 domains can alter the intersystem crossing rate and rate of adduct formation by adjusting the population distribution of these dark-state conformers. This might permit them to function as a modulator of the signal intensity under low light conditions

    Structure and Thermodynamics of Polyelectrolyte Complexes

    No full text
    corecore