2,673 research outputs found
Dynamic Physical Fitness and Body Composition
Dynamic physical fitness may be satisfactorily estimated by the Harvard step test (modified for women) and this and other aspects of physical fitness are measured by appropriate test batteries. The percentage by weight of fat in the body may be calculated from the specific gravity or from caliper measurements of skin folds or ultrasonic measurements of the thickness of the layer of subcutaneous fat at selected sites. In general, physical education students are fitter than non-athletic students. British men students of physical education are fitter than American. International differences are less marked in non-athletic men and in women. Performance of fitness tests is not as a rule influenced by the height or weight of the subjects but the more obese subjects have a poorer performance as do heavier subjects when the extra weight is due to obesity
Alien Registration- Langan, Archibald W. (South Portland, Cumberland County)
https://digitalmaine.com/alien_docs/20073/thumbnail.jp
The Geology of the Limespur-Sappington Area
The area to be surveyed was divided up into sections add each crew of three or four members was assigned one of these sections. The first two days were spent in studying and mapping the geologic section in the South Boulder Canyon where we obtained practice in alidade surveying, brunton, pacing, and auto traverse
Electrical characteristics of amorphous silicon schottky barriers
The behaviour of the admittance of an a-Si Schottky barrier as a function of bias, small signal measuring frequency and temperature is not well understood. In this thesis model calculations are described which are both well defined and comprehensive in their description of the Schottky barrier admittance. These calculations allow a better understanding of experimental admittance plots. Various methods are developed for finding, from Schottky barrier admittance measurements, the density of states in the a-Si mobility gap. The methods are essentially developments of the model admittance calculations, and it should be stressed that the reliability of the deduced density of states depends on the correctness of the initial model premises. In particular it is assumed that the gap state capture cross-sections are all equal and independent of energy. Experimental admittance measurements are presented for an n-type doped a-Si Schottky barrier. The measurements are quite consistent with the developed theory and an estimate of the density of states in the upper half of the mobility gap is calculated. The average value is ~ 10(^17) cm(^-3)eV(^-1) and there is a minimum situated approximately at 0.3 eV below the conduction band mobility edge. This result is in approximate agreement with the density of states deduced by the DLTS technique. It is also deduced from current-voltage measurements that, of the existing theories, Diffusion Theory probably best describes the leakage current in a-Si Schottky barriers. This deduction is arrived at using some novel analysis
The sweating sickness in England
An acute infect;ous fever, called the sweating sickness, broke out in England in five major epidemics in the years 1485, 1508, 1517, 1528 and 1551. Only one epidemic, that of 1528, spread also on the continent of Europe. The disease I-vas characterized by headache, pain in the chest, and profuse sweating, and frequently proved fatal within 24 hours. It can be distinguished from plague, malaria, and typhus, all of which were prevalent in the 161h century, and was probably not influenza but anoTher virus infection which has not reappeared in England since 1551
Canopy Architecture and Plant Density Effect in Short-Season Chickpea (Cicer arietinum L.)
Chickpea (Cicer arietinum L.) production on the semi-arid Canadian Prairies is challenging due to a short growing season and low and variable moisture. The current recommended chickpea population density of 44 plants m-2 is based on preliminary studies and a narrow range of 20 to 50 plants m-2. The aims of this study were to i) determine optimum population density of varying chickpea canopy types, i.e., leaf type and growth habit, by investigating seed yield responses at 30 to 85 plants m-2 and ii) identify desirable parental traits for breeding programs by assessing growth and yield parameter responses to varying leaf types and growth habits at a range of population densities. Field experiments were conducted from 2002 to 2005. Canopy measurements and calculated variables included light interception, biomass, growth rate, seed yield, harvest index, ascochyta blight severity and radiation- and water use efficiencies.
The plant density which produced the highest seed yield when averaged over years for each location for each treatment revealed that a plant density of at least 55 plants m-2 produced a 23% to 49% seed yield increase above that of the currently recommended plant density. This indicates that a higher seed yield average over the long term in spite of periodic low seed yield episodes will be more profitable to producers. Increasing plant density increased lowest pod height significantly in all except one location-year but did not explicitly increase ascochyta blight severity or decrease individual seed size. This suggests that increasing the recommended chickpea plant density on the Canadian Prairies will increase seed yield but would neither negatively impact individual seed size nor ascochyta blight severity, especially, when combined with good agronomic practices.
Fern-leaved cultivars had significantly higher maximum intercepted light (62 to 91%), seed yield (136 to 369 g m-2), harvest index (0.33 to 0.53), yield-based water use efficiency (0.56 to 1.06 g m-2 mm-1) and lower ascochyta blight severity (3 to 27%) than the unifoliate cultivars in all location-years. The fern-leaved cultivars also tended to show significantly higher cumulative intercepted radiation (221 to 419 MJ m-2) and biomass (306 to 824 g m-2) but leaf type showed no consistent effect on radiation use efficiency.
Cultivars with bushy growth habit generally performed better regarding maximum intercepted light (62 to 90%), cumulative intercepted radiation (233 to 421 MJ m-2), biomass (314 to 854 MJ m-2), seed yield (120 to 370 g m-2), harvest index (0.37 to 0.50), yield-based water use efficiency (0.56 to 1.06 g m-2 mm-1) and ascochyta blight severity (7 to 36%) than the erect cultivars. The overall performance of the spreading cultivar was generally intermediate between the bushy and erect cultivars except for ascochyta blight severity where the spreading cultivar exhibited significantly lower disease severity (3 to 36%). Radiation use efficiency was generally not influenced by growth habit.
Increasing plant population density generally increased intercepted light, biomass and cumulative intercepted radiation on each sampling day after seeding resulting in a general increase in seed yield. Harvest index, however, remained constant and ascochyta blight severity was generally stable but radiation use efficiency decreased with increasing population density. Chickpea cultivars with fern leaves and bushy growth habit at higher than currently recommended population densities would best utilize the limited resources of the short-season Canadian prairie environment to maximize and stabilize seed yield
Maximizing the survival probability in a cash flow inventory problem with a joint service level constraint
This paper investigates a multi-period stochastic cash flow inventory problem with the aim of maximizing the long-term survival probability, which may be the objective of some retailers especially in periods of economic distress. Demand in each period is stochastic and can be non-stationary. In order to avoid too many lost sales under this objective, we introduce a joint chance constraint requiring the probability of no stockouts during the planning horizon to be higher than a specified service level. We develop a scenario-based model and a sample average approximation (SAA) model to solve the problem. A statistical upper bound on the survival probability based on SAA is provided and we discuss upper and lower bounds for the problem based on stochastic dynamic programming. We also propose a rolling horizon approach with service rate updating to test the out-of-sample performance of the two stochastic models and solve problems with long planning horizons. We test the two methods in large numerical tests and find that the rolling horizon approach together with the stochastic models can solve realistically sized problems in reasonable time
- …