7,469 research outputs found

    The effect of bedrest on various parameters of physiological function. part v- dietary requirements

    Get PDF
    Effect of bedrest on various parameters of physiological function - nutritional requiremen

    Alpha shock

    Get PDF

    Effect of Application Timing of Oxamyl in Nonbearing Raspberry for Pratylenchus penetrans Management

    Get PDF
    In 2012, theWashington raspberry (Rubus idaeus) industry received a special local needs (SLN) 24(c) label to apply Vydate L (active ingredient oxamyl) to nonbearing raspberry for the management of Pratylenchus penetrans. This is a new use pattern of this nematicide for raspberry growers; therefore, research was conducted to identify the optimum spring application timing of oxamyl for the suppression of P. penetrans. Three on-farm trials in each of 2012 and 2013 were established in Washington in newly planted raspberry trials on a range of varieties. Oxamyl was applied twice in April (2013 only), May, and June, and these treatments were compared to each other as well as a nontreated control. Population densities of P. penetrans were determined in the fall and spring postoxamyl applications for at least 1.5 years. Plant vigor was also evaluated in the trials. Combined results from 2012 and 2013 trials indicated that application timing in the spring was not critical. Oxamyl application reduced root P. penetrans population densities in all six trials. Reductions in P. penetrans population densities in roots of oxamyl-treated plants, regardless of application timing, ranged from 62% to 99% of densities in nontreated controls. Phytotoxicity to newly planted raspberry was never observed in any of the trials. A nonbearing application of oxamyl is an important addition to current control methods used to manage P. penetrans in raspberry in Washington

    Coexisting patterns of population oscillations: the degenerate Neimark Sacker bifurcation as a generic mechanism

    Full text link
    We investigate a population dynamics model that exhibits a Neimark Sacker bifurcation with a period that is naturally close to 4. Beyond the bifurcation, the period becomes soon locked at 4 due to a strong resonance, and a second attractor of period 2 emerges, which coexists with the first attractor over a considerable parameter range. A linear stability analysis and a numerical investigation of the second attractor reveal that the bifurcations producing the second attractor occur naturally in this type of system.Comment: 8 pages, 3 figure

    The impact of El Nino and La Nina weather patterns on Canterbury water resources

    Get PDF
    Water is an extremely important and increasingly contentious resource in the Canterbury region. An accurate assessment of the size and behaviour of the resource is fundamental to effective water management. This study attempts to calculate rainfall, runoff and evapotranspiration (ET) for Canterbury in order to ascertain a regional water balance as a means of quantifying a net excess or deficit of water in the hydrological budget. The effect of the El Nino Southern Oscillation (ENSO) on this water balance is investigated. Water balances are calculated for two ‘mega-catchments’; western or ‘Alpine’ Canterbury, from the Southern Alps to the foothills, and eastern or ‘Plains’ Canterbury. Long term averages (LTA) are compared with the two strongest years of positive and negative ENSO in the last thirty years, as measured by the Southern Oscillation Index (SOI). The water balance of the Alpine catchment proved problematic, with a significant deficit result. This is thought to be due to major underestimation of rainfall in the alpine region resulting from poor distribution of rainfall gauges. The rainfall figures were recalculated by addition of runoff and ET. The resulting rainfall figures show an increase in rain from LTA for El Nino years and an even greater increase for La Nina, although the high variability in rain means these differences are not statistically significant. This research indicates that there is an impact of strong ENSO events on the water budget components of Canterbury, New Zealand. La Nina conditions tend to produce increased rainfall and decreased evapotranspiration compared to El Nino conditions. The Plains catchment is where the pressure on the water resources is greatest. The LTA’s produce an annual excess of 94mm, while El Nino years with lower rainfall and higher ET, produced a deficit of 65mm. La Nina years have rainfall between the LTA and El Nino years, but a lower ET than either, and produces a deficit of 10mm. Due to data and modeling inaccuracies the La Nina deficit is not large enough to be considered certain. Availability of accurate measured data across the catchments proved to be a major issue for this study. As a result a mixture of measured and modeled data is used and results should be treated with caution. It is recommended that significant investment be made in increasing the capacity of the region to accurately quantify its water resources

    Towards a generalized computational fluid dynamics technique for all Mach numbers

    Get PDF
    Currently there exists no single unified approach for efficiently and accurately solving computational fluid dynamics (CFD) problems across the Mach number regime, from truly low speed incompressible flows to hypersonic speeds. There are several CFD codes that have evolved into sophisticated prediction tools with a wide variety of features including multiblock capabilities, generalized chemistry and thermodynamics models among other features. However, as these codes evolve, the demand placed on the end user also increases simply because of the myriad of features that are incorporated into these codes. In order for a user to be able to solve a wide range of problems, several codes may be needed requiring the user to be familiar with the intricacies of each code and their rather complicated input files. Moreover, the cost of training users and maintaining several codes becomes prohibitive. The objective of the current work is to extend the compressible, characteristic-based, thermochemical nonequilibrium Navier-Stokes code GASP to very low speed flows and simultaneously improve convergence at all speeds. Before this work began, the practical speed range of GASP was Mach numbers on the order of 0.1 and higher. In addition, a number of new techniques have been developed for more accurate physical and numerical modeling. The primary focus has been on the development of optimal preconditioning techniques for the Euler and the Navier-Stokes equations with general finite-rate chemistry models and both equilibrium and nonequilibrium thermodynamics models. We began with the work of Van Leer, Lee, and Roe for inviscid, one-dimensional perfect gases and extended their approach to include three-dimensional reacting flows. The basic steps required to accomplish this task were a transformation to stream-aligned coordinates, the formulation of the preconditioning matrix, incorporation into both explicit and implicit temporal integration schemes, and modification of the numerical flux formulae. In addition, we improved the convergence rate of the implicit time integration schemes in GASP through the use of inner iteration strategies and the use of the GMRES (General Minimized Resisual) which belongs to the class of algorithms referred to as Krylov subspace iteration. Finally, we significantly improved the practical utility of GASP through the addition of mesh sequencing, a technique in which computations begin on a coarse grid and get interpolated onto successively finer grids. The fluid dynamic problems of interest to the propulsion community involve complex flow physics spanning different velocity regimes and possibly involving chemical reactions. This class of problems results in widely disparate time scales causing numerical stiffness. Even in the absence of chemical reactions, eigenvalue stiffness manifests itself at transonic and very low speed flows which can be quantified by the large condition number of the system and evidenced by slow convergence rates. This results in the need for thorough numerical analysis and subsequent implementation of sophisticated numerical techniques for these difficult yet practical problems. As a result of this work, we have been able to extend the range of applicability of compressible codes to very low speed inviscid flows (M = .001) and reacting flows

    Preliminary Investigation of the `Learnable Evolution Model' for Faster/Better Multiobjective Water Systems Design

    Get PDF
    The design of large scale water distribution systems is a very difficult optimisation problem which invariably requires the use of time-expensive simulations within the fitness function. The need to accelerate optimisation for such problems has not so far been seriously tackled. However, this is a very important issue, since as MOEAs become more and more recognised as the lsquoindustry standardrsquo technique for water system design, the demands placed on such systems (larger and larger water networks) will quickly meet with problems of scaleup. Meanwhile, LEM (Learnable Evolution Modelrsquo) has appeared in the Machine Learning literature, and provides a general approach to integrating machine learning into evolutionary search. Published results using LEM show very great promise in terms of finding near-optimal solutions with significantly reduced numbers of evaluations. Here we introduce LEMMO (Learnable Evolution Model for Multi-Objective optimization), which is a multi-objective adaptation of LEM, and we apply it to certain problems commonly used as benchmarks in the water systems community. Compared with NSGA-II, we find that LEMMO both significantly improves performance, and significantly reduces the number of evaluations needed to reach a given target. We conclude that the general approach used in LEMMO is a promising direction for meeting the scale-up challenges in multiobjective water system design
    • …
    corecore