19,039 research outputs found

    Integrated multi vector vortex beam generator

    Full text link
    A novel method to generate and manipulate vector vortex beams in an integrated, ring resonator based geometry is proposed. We show numerically that a ring resonator, with an appropriate grating, addressed by a vertically displaced access waveguide emits a complex optical field. The emitted beam possesses a specific polarization topology, and consequently a transverse intensity profile and orbital angular momentum. We propose a combination of several concentric ring resonators, addressed with different bus guides, to generate arbitrary orbital angular momentum qudit states, which could potentially be used for classical and quantum communications. Finally, we demonstrate numerically that this device works as an orbital angular momentum sorter with an average cross-talk of -10 dB between different orbital angular momentum channels.Comment: 8 pages, 7 figure

    Gravitational Collapse in One Dimension

    Full text link
    We simulate the evolution of one-dimensional gravitating collisionless systems from non- equilibrium initial conditions, similar to the conditions that lead to the formation of dark- matter halos in three dimensions. As in the case of 3D halo formation we find that initially cold, nearly homogeneous particle distributions collapse to approach a final equilibrium state with a universal density profile. At small radii, this attractor exhibits a power-law behavior in density, {\rho}(x) \propto |x|^(-{\gamma}_crit), {\gamma}_crit \simeq 0.47, slightly but significantly shallower than the value {\gamma} = 1/2 suggested previously. This state develops from the initial conditions through a process of phase mixing and violent relaxation. This process preserves the energy ranks of particles. By warming the initial conditions, we illustrate a cross-over from this power-law final state to a final state containing a homogeneous core. We further show that inhomogeneous but cold power-law initial conditions, with initial exponent {\gamma}_i > {\gamma}_crit, do not evolve toward the attractor but reach a final state that retains their original power-law behavior in the interior of the profile, indicating a bifurcation in the final state as a function of the initial exponent. Our results rely on a high-fidelity event-driven simulation technique.Comment: 14 Pages, 13 Figures. Submitted to MNRA

    Influence of adaptive mesh refinement and the hydro solver on shear-induced mass stripping in a minor-merger scenario

    Full text link
    We compare two different codes for simulations of cosmological structure formation to investigate the sensitivity of hydrodynamical instabilities to numerics, in particular, the hydro solver and the application of adaptive mesh refinement (AMR). As a simple test problem, we consider an initially spherical gas cloud in a wind, which is an idealized model for the merger of a subcluster or galaxy with a big cluster. Based on an entropy criterion, we calculate the mass stripping from the subcluster as a function of time. Moreover, the turbulent velocity field is analyzed with a multi-scale filtering technique. We find remarkable differences between the commonly used PPM solver with directional splitting in the Enzo code and an unsplit variant of PPM in the Nyx code, which demonstrates that different codes can converge to systematically different solutions even when using uniform grids. For the test case of an unbound cloud, AMR simulations reproduce uniform-grid results for the mass stripping quite well, although the flow realizations can differ substantially. If the cloud is bound by a static gravitational potential, however, we find strong sensitivity to spurious fluctuations which are induced at the cutoff radius of the potential and amplified by the bow shock. This gives rise to substantial deviations between uniform-grid and AMR runs performed with Enzo, while the mass stripping in Nyx simulations of the subcluster is nearly independent of numerical resolution and AMR. Although many factors related to numerics are involved, our study indicates that unsplit solvers with advanced flux limiters help to reduce grid effects and to keep numerical noise under control, which is important for hydrodynamical instabilities and turbulent flows.Comment: 23 pages, 18 figures, accepted for publication by Astronomy and Computin

    Localized electron state in a T-shaped confinement potential

    Full text link
    We consider a simple model of an electron moving in a T-shaped confinement potential. This model allows for an analytical solution that explicitly demonstrates the existence of laterally bound electron states in quantum wires obtained by the cleaved edge overgrowth technique.Comment: 6 pages, 5 figure

    Spin and Charge Luttinger-Liquid Parameters of the One-Dimensional Electron Gas

    Full text link
    Low-energy properties of the homogeneous electron gas in one dimension are completely described by the group velocities of its charge (plasmon) and spin collective excitations. Because of the long range of the electron-electron interaction, the plasmon velocity is dominated by an electrostatic contribution and can be estimated accurately. In this Letter we report on Quantum Monte Carlo simulations which demonstrate that the spin velocity is substantially decreased by interactions in semiconductor quantum wire realizations of the one-dimensional electron liquid.Comment: 13 pages, figures include

    Communication interventions in adult and pediatric oncology: A scoping review and analysis of behavioral targets

    Get PDF
    BackgroundImproving communication requires that clinicians and patients change their behaviors. Interventions might be more successful if they incorporate principles from behavioral change theories. We aimed to determine which behavioral domains are targeted by communication interventions in oncology.MethodsSystematic search of literature indexed in Ovid Medline, Embase, Scopus, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, Clinicaltrials.gov (2000-October 2018) for intervention studies targeting communication behaviors of clinicians and/or patients in oncology. Two authors extracted the following information: population, number of participants, country, number of sites, intervention target, type and context, study design. All included studies were coded based on which behavioral domains were targeted, as defined by Theoretical Domains Framework.FindingsEighty-eight studies met inclusion criteria. Interventions varied widely in which behavioral domains were engaged. Knowledge and skills were engaged most frequently (85%, 75/88 and 73%, 64/88, respectively). Fewer than 5% of studies engaged social influences (3%, 3/88) or environmental context/resources (5%, 4/88). No studies engaged reinforcement. Overall, 7/12 behavioral domains were engaged by fewer than 30% of included studies. We identified methodological concerns in many studies. These 88 studies reported 188 different outcome measures, of which 156 measures were reported by individual studies.ConclusionsMost communication interventions target few behavioral domains. Increased engagement of behavioral domains in future studies could support communication needs in feasible, specific, and sustainable ways. This study is limited by only including interventions that directly facilitated communication interactions, which excluded stand-alone educational interventions and decision-aids. Also, we applied stringent coding criteria to allow for reproducible, consistent coding, potentially leading to underrepresentation of behavioral domains

    Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    Full text link
    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded \qo{space} for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that is capable of converting spin to an arbitrary value of OAM ℓ\ell. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge qq. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the OAM changes in value by ℓ=±2qℏ\ell = \pm2q\hbar per photon. We experimentally demonstrate ℓ\ell values ranging from ±1\pm 1 to ±25\pm 25 with conversion efficiencies of 8.6±0.4 %8.6\pm0.4~\%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations and nano-scale sensing.Comment: 4 pages, 3 figures - submitted

    Variability of the X-ray P Cygni Line Profiles from Circinus X-1 Near Zero Phase

    Get PDF
    The luminous X-ray binary Circinus X-1 has been observed twice near zero orbital phase using the High-Energy Transmission Grating Spectrometer (HETGS) onboard Chandra. The source was in a high-flux state during a flare for the first observation, and it was in a low-flux state during a dip for the second. Spectra from both flux states show clear P Cygni lines, predominantly from H-like and He-like ion species. These indicate the presence of a high-velocity outflow from the Cir X-1 system which we interpret as an equatorial accretion-disk wind, and from the blueshifted resonance absorption lines we determine outflow velocities of 200 - 1900 km/s with no clear velocity differences between the two flux states. The line strengths and profiles, however, are strongly variable both between the two observations as well as within the individual observations. We characterize this variability and suggest that it is due to both changes in the amount of absorbing material along the line of sight as well as changes in the ionization level of the wind. We also refine constraints on the accretion-disk wind model using improved plasma diagnostics such as the He-like Mg XI triplet, and we consider the possibility that the X-ray absorption features seen from superluminal jet sources can generally be explained via high-velocity outflows.Comment: 12 pages, 8 figures, accepted by ApJ (Main
    • …
    corecore