81,470 research outputs found

    A time-dependent approach to the numerical solution of the flow field about an axisymmetric vehicle at angle of attack Final report

    Get PDF
    Three dimensional inviscid flow field analysis for axisymmetric configurations at angle of attac

    Channeled propagation of solar particles

    Get PDF
    Bartley (1966) and McCracken and Ness (1966) identified bundles of interplanetary magnetic field (IMF) lines that differed in direction from the interplanetary field lines in which they were imbedded. These bundles, called filaments differed in direction by as much as several tens of degrees from the surrounding field. The filaments werre first noticed due to the large and sudden change in flow direction of highly anisotropic solar flare protons in the energy range 1 to 13 MeV. Passage of the filaments over the spacecraft required a few hours, implying a diameter for the filaments of approximately 3 x 10 to the 6th power km at a distance of 1 AU from the Sun. In 1968, Jakipii and Parker used Leighton's hypothesis of random walk of magnetic field lines associated with granules and supergranules (1964) to develop a picture of an interplanetary medium composed of a tangle of field lines frozen into the solar wind, but whose feet were carried about by the random motions at the solar surface. Jakipii and Parker noted that using a correlation length of 15,000 km - about the radius of a supergranule - the magnetic structure would be 3 x 10 to the 6th power km in size of the filaments as determined by Bartley and McCracken and Ness. These workers did not find changes in the solar particle intensity, anisotropy ratio or energy spectrum as the spacecraft entered the filament

    c-axis transport and phenomenology of the pseudo-gap state in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We measure and analyze the resistivity of Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} crystals for different doping δ\delta. We obtain the fraction of carrier η(T,δ)=ng/nTOT\eta(T,\delta) = n_g/n_{TOT} that do not participate to the c-axis conductivity. All the curves η(T,δ)\eta(T,\delta) collapse onto a universal curve when plotted against a reduced temperature x=[T−Θ(δ)]/Δ∗(δ)x=[T-\Theta(\delta)]/\Delta^{*}(\delta). We find that at the superconducting transition ngn_g is doping independent. We also show that a magnetic field up to 14 T does not affect the degree of localization in the (a,b) planes but widens the temperature range of the x-scaling by suppressing the superconducting phase coherence.Comment: 11 pages, 5 figures, submitted to Phys.Rev.

    A study to examine the feasibility of using surface penetrators for mineral exploration

    Get PDF
    The feasibility of using penetrators in earth applications is examined. Penetrator applications in exploration for mineral resources only is summarized. Instrumentation for future penetrators is described. Portions of this report are incorporated into a more extensive report examining other penetrator applications in exploration for fossil fuels, geothermal resources, and in environmental and engineering problems, which is to be published as a NASA technical publication

    Effective Hamiltonian for fermions in an optical lattice across Feshbach resonance

    Full text link
    We derive the Hamiltonian for cold fermionic atoms in an optical lattice across a broad Feshbach resonance, taking into account of both multiband occupations and neighboring-site collisions. Under typical configurations, the resulting Hamiltonian can be dramatically simplified to an effective single-band model, which describes a new type of resonance between the local dressed molecules and the valence bond states of fermionic atoms at neighboring sites. On different sides of such a resonance, the effective Hamiltonian is reduced to either a t-J model for the fermionic atoms or an XXZ model for the dressed molecules. The parameters in these models are experimentally tunable in the full range, which allows for observation of various phase transitions.Comment: 5 pages, 2 figure
    • …
    corecore