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A three-dimensional inviscid flow field ana lys i s  for t rea t ing  ax i symmct r i c  

configurations a t  angle of attack h a s  been formulated and mechanized in the 

form of a F o r t r a n  IV U N I V A C  1108 computer  p rogram.  

floating m e s h  technique i s  employed which involves use  of a conditionally 

stable, f i r s t -o rde r  finite difference representat ion of the governing equations. 

Provis ions  a rc  included for t reat ing an  ax isymnie t r ic  f lare  locatcd on the 

vehicle afterbody. 

sphere-cone configurations as well  as for a hemi-cyl indrical  f lare  in  a 

uniform f r ee  s t r eam.  

three-dimensional  mode of calculation does  not appear  t o  introduce unstable 

behavior in  c a s e s  which can be run  successful ly  a t  z e r o  angle of attack. 

applicable range and accuracy  o f  the computer  p rogram are  d iscussed  with 

respec t  to  free s t r e a m  and vehicle geometry  pa rame te r s .  

A time-d'apendent t 
\ 

Computations have been pe r fo rmed  for sphere  and 

A significant feature of the r e su l t s  i s  that  the 
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Section 1 

INTRODUCTION 

During the pas t  s eve ra l  yea r s ,  a new c l a s s  of t ime-dependent computational 

techniques has been developed and applied to the  solution of s teady-s ta te  

fluid flow problems.  These methods a r e  l a rge ly  based  on physical and 

mathematical  concepts originally der ived in  t rea t ing  unsteady flow phe- 

nomena. Continuing improvements  in  computer  technology have increased  

the economic feasibil i ty of performing the l a rge - sca l e  calculations a s  soci-  

ated with these methods.  

p re sen t  computational s ta te  of the a r t  is given below. 

A br ief  review of developments that  l ead  to the 

Because of the difficulty involved in  numer ica l ly  solving the unsteady 

equations of fluid m 

a c r o s s  which flow proper t ies  a r e  discontinuous, a technique was developed 

by  J. von Neumann in  1949 (Reference 1 )  wherein ar t i f ic ia l  dissipative t e r m s  

w e r e  explicit ly introduced which had the effect of "smearing out" the d is -  

continuities. This eliminated the necess i ty  for  locating these  sur faces  in 

space and t ime during the calculation to apply spec ia l  boundary conditions 

along them. 

i~xu.vLig. bouildaries (shock waves ) 

Following fur ther  mathematical  development in  the a r e a  of dissipative finite 

difference schemes  (See Reference 2 for a comprehensive dis,cussion of this 

topic), many fluid flow problems were  successful ly  attacked using this 

approach. In pract ice ,  the method involves a fixed network of m e s h  points 

within which d i sc re t e  discontinuities such a s  shock waves appear  a s  moving 

dis turbances covering seve ra l  m e s h  points in  width. In par t icu lar ,  compu- 

tations were  per formed at the Rand Corporation (Reference 3) and a t  the 

Los Alamos Scientific Labora tory  (LASL). 

include various two-dimensional problems involving solutio& of the Navier - 

Stokes equations, for example, Reference 4. The continuing work at LASL 

, 

I 
Topics t rea ted  by the l a t t e r  

I 

I 
1 

1 



involves unique Euler ian  (fixed m e s h  o r  ce l l s )  and Lagrangian (par t ic le  

t racing)  approaches.  Recently, Bohachevsky (Reference 5)  has  used  a 

fixed m e s h  method to compute the flow f ie ld  about ax isymmetr ic  bodies at 

angle of attack. 

tive computing t ime requi rements  assoc ia ted  with highly damped, fixed mesh ,  

I 

The r e su l t s  of this study emphasized the somewhat  prohibi-  
I 

t ime -dependent techniques.  

1959, Godunov (Reference 6) introduced the floating mesh concebt for  the 

t rea tment  of blunt bodies in  a supersonic  stream in which the shock is 

t reated a s  a t r u e  discontinuity and the finite difference m e s h  is uniformly 

distributed between the shock and the body. 

f e  rencing technique involving l inear ized  s imple  wave relat ions and obtained 

a steady-state  flow field in asymptot ic  fashion. 

daAp out the t r ans i en t  waves a r i s ing  f r o m  the suddenly imposed supersonic  

f r e e  s t r eam.  Subsequently, Babenko et a l . ,  (Reference 7 )  used a floating 

mesb  approach to compute the s teady-s ta te  flow field about pointed cones a t  

angle of attack. Moret t i  (Reference 8)  has  employed a s imi l a r  technique to 

t r ea t  blunted cones and ell ipsoids a t  angle of a t tack using cha rac t e r i s t i c  

relations a t  the shock and body in connection with a second-order  finite 

difference 

ence 9) .  

He used  a sophis t icated dif- 

During the "s tar t ing 
~ 

process" ,  I 

I 

ar t i f ic ia l  viscosi ty  re la t ions within the shock l aye r  w e r e  used  to 

s c h e m e  s i m i l a r  to that developed by  Lax and Wendroff (Refer -  

Masson (Reference 10)  has  recent ly  applied the Godunov method 

to the computation of flow fields about planar and ax i symmet r i c  blunt bodies 

in supersonic  flow. 

A l l  of the preceding methods have, a t  l e a s t  in par t ,  a t tempted to desc r ibe  

the asymptotic p rocess  in t ime so  that  a na tura l  t ransi t ion to s t eady  s t a t e  

occurs  during the calculation. 

dependent approach and has  emphasized the inherent  computational 

advantages; for  example,  the governing unsteady differential  equations a r e  

hyperbolic in  the subsonic and sonic r eg imes  a s  well a s  in the supersonic  

regime. 

s ingular i t ies  (e. g. , blunt-body d i r ec t  integral  method)  m a y  be formula ted  

as singular i ty-free init ial  value problems.  

purely i te ra t ive  var iable ,  the asymptot ic  approach to s teady s t a t e  m a y  not  

be related to a n  unsteady flow p rocess  found in na ture .  

Crocco (Reference 1 1 )  has  examined the time- 
i 

Thus, mixed flow two-point boundary value problems involving 

Fur the r ,  consider ing t ime a s  a 

I 
I 
I 

2 



The p resen t  study i s  concerned with the application of t ime-dependent finite 

difference techniques to the solution of the s teady-state ,  inviscid flow field 

about an ax isymmetr ic  vehicle at angle of a t tack in a supersonic  f r e e  s t r e a m .  

Provis ions have been included for  t rea t ing  a body f l a r e  with detached shock 

wave ( t ransonic  f l a r e ) .  

accura te ly  bow and flare shock waves a s  d i sc re t e  su r faces  a c r o s s  which 

flow proper ty  discontinuities a r e  specif ied by  exact moving shock relat ions.  

The pr incipal  objective of the study is to develop a n  operational computer  

p rogram capable of generating an  accura te  three-dimensional  flow field 

descr ipt ion given init ial  data consisting of vehicle geometry,  free s t r e a m  

conditions, and angle of attack. 
select ion of the f ini te  difference analog of the governing equations a r e  guided 

by the r e su l t s  of l inear  stabil i ty theory,  a significant deg ree  of numer ica l  

experimentation is  involved because the  p re sen t  multidimensional problem 

i s highly nonlinea r . 

A floating m e s h  approach has  been used to  desc r ibe  

\ 
\I Although the analytical  formulat ion and the 

3 





I I Section 2 
, ANALYTICAL DEVELOPMENT OF GOVERNING EQUATIONS 

2.1 GOVERNING EQUATIONS IN CYLINDRICAL CURVILINEAR 
COORDINATES 

The equations descr ibing the unsteady, inviscid,  adiabatic flow of gas in 

cylindrical  curvi l inear  coordinates can be represented  in the conservat ion-  

law f o r m  (see Appendix A): 

where 

n c 

U = r ( l  + E )  

n 
R 

- 
N = r(1-t-) 

Q =  

3 1 

I 2 v v  r p  s n .  n 
R - ( 1  +x) s ine (pv+  + p )  

= rM , 

1 pv+ 
P V V S  

! J  

5 



I 

and, for a per fec t  gas ,  

Since p = p(U), the vector  functions M, N, P, and Q can  be expres sed  

ent i re ly  as functions of the conservat ion var iab les  U. 

2 .2  
i 

TRANSFORMATION TO SHOCK LAYER COORDINATES 

A bas i c  considerat ion involved in  the choice of a coordinate s y s t e m  is tha t  

a finite difference network can be conveniently descr ibed  which is uniformly 

distributed between the shock and body. To establ ish a shock l aye r  coordi-  

nate sys t em which is not excessively d is tor ted  by the presence  of an 

ex t remely  blunt nose  o r  a s h a r p  co rne r ,  an a r b i t r a r y  r e fe rence  su r face  C ( r )  

is establ ished which in t e r sec t s  the axis  of s y m m e t r y  normally and s e r v e s  a s  

the base  for the curvi l inear  coordinate s y s t e m  (s, n, $) (F igure  2-1).  F o r  a 

smooth (continuous s lope)  blunt body, B ( r )  and C ( r )  can  be requi red  to 

coincide for convenience. The finite difference network is dis t r ibuted 

be tdeen  the shock wave W ( s ,  9, t )  and the body with An 

given value of s ,  

number of equally spaced strips. 

\ 

I 

= constant ,at a 
i 

i.e., the shock layer  i s  subdivided into an a r b i t r a r y  

A shock l a y e r  t ransformation,  based  on the preceding considerat ions,  can 

be defined by  the relat ions ( see  F igu re  2 - 2 )  

where j = 0, 1, 2, . , . , S with S = number of shock l aye r  s t r i p s .  It fol-  

lows that  the body and shock wave are given by = 0 and ?i = 1, r e spec -  

tively, in the t r ans fo rmed  sys  tem.  Per forming  the t ransformation:  the 

governing Equations 2 -1  take the fo rm 

6 



r 

n 

X 
0 

I 

Figure 2-1. Coordinate System Description 
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Figure 2-2. Shock Layer Geometric Parameters 
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whe re  

n-f 
G(s,k,+, t )  = -- 

( F - f ) 2  

1 a r  a F  af H ( s , n , + ,  t )  = --- F-f a s  

The specification of explicit  analytical  express ions  for  the body and coordi-  

nate sys t em b a s e  s u r f a c e s  enables determinat ion of f(s) .  

d f /ds  i s  obtained f r o m  

Subsequently, 

I 

The temporal  der ivat ive i )F/at  can  be expres sed  in t e r m s  of the shock 

velocity and the spat ia l  der ivat ives  a F / a s  and a F / a +  ( see  Subsection 2.  3 ) .  

Evaluation of a F / a s  and a F / a +  requi res  the introduction of a finite difference 

approximation for  these  parti'al deri-wafjwe 

constant planes,  respectively.  

2 . 3  SPECIFICATION O F  BOUNDARY CONDITIONS 

2. 3 .  1 Shock Surface 

The Rankine-Hugoniot re la t ions for  a moving three-dimensional  shock 

sur face  (derived in Appendix B) a r e  applied a t  the bow and f la re  shock waves. 

The shock velocity U ( s , + ,  t )  s e r v e s  a s  a control function during the asymp- _- I S 
totic convergence p rocess .  

N to the shock sur face  a t  time t., 

U is m e a s u r e d  in the direct ion of the normal  
S 

--L 

Referr ing to F igure  2-3,  

= us cosp, a 8 F  - ( F - f )  = - 
d t  a t  

8 
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Figure 2-3. Shock Velocity Orientation 

Defining the shock s u r f a c e  by g ( s ,  n,+, t )  = 0, 

Le t  g = n - F(s,+,  t )  

Then 

= 0 .  

where  ( 2 - 5 )  

r = r  + 
s 0 

Fcose 

2. 3 .  2 Body Surface 

The only r igorous condition which can be  specified on the body sur face  during 

the t ime-dependent flow p rocess  is that the normal  cornponeAt of velocity 

9 



vanishes.  
ponents v and v at the body (v  i s  tangent t o  the body): 

This condition provides  a re la t ionship between the velocity com- 

9B S n 

2 . 3 . 3  Convex Corner  

Independent of the coordinate s y s t e m  used,  the influence of a discontinuity in 

body slope (convex c o r n e r )  can only be approximately descr ibed  with a finite 

difference m e s h  unless  auxi l iary analytical  relations a r e  provided a t  the 

co rne r .  In the axisyrnmetr ic  case ,  for  example,  i t  is possible  to re la te  

ups t r eam and downstream flow proper t ies  and the i r  r a t e s  of change along the 

body sur face  using exact inviscid equations (Reference 12). 

general  approach, a descr ipt ion of flow proper t ies  both on and off the body 

nea r  a convex co rne r  based  on the analysis  of Reference 13 has  been adapted 

(Reference 14) for u s e  with an intezgral.m&H.? 

nosed, e. g . ,  f lat-faced, ax isymmetr ic  body flow f ie lds .  F o r  the 
three-dimensional  ca se ,  comparable  analyses  would be  required which, if 

developed, could introduce prohibit ive complexity in a symmet r i c  flow ca l -  

culations. h the p re sen t  approach, therefore ,  the c o r n e r  description p r i -  

In a m o r e  

oi :=xt r e m  el y blunt - 

m a r i l y  involves enforcement  of ups t r eam and downstream body sur face  

boundary conditions. 

2. 3 .4  Axis of Symmetry 

Calculations at the body axis ,  which is common to a l l  mer id iana l  planes,  

requi re  special  t r ea tmen t  because of the singular behavior of cer ta in  t e rms  

in the governing equations a s  r -0. 

the choice of coordinate sys t em and p e r s i s t s  fo r  both symmet r i c  (CY 

asymmet r i c  (CY > 0 )  flow cases .  

valid a t  the axis of s y m m e t r y  has  been der ived and is presented  in 

Appendix C. 

regular  

than those assoc ia ted  with the $ =  0 and (6 = II planes.  

relations at m e s h  points contained in the flow field plane of symmetry rc f lc ' c '  

I /  
This behavior is pure ly  a functioll of  

0 )  and 

A special  f o r m  of these  equations krhich is 

I 
' 

F o r  the a symmet r i c  flow case ,  the axis  (given by r = 0) is a 
I 

l ine  in the flow field with no applicable s y m m e t r y  conditiods other- 

The finite diifeyencc 
. 

I 

1 
i 
I 
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appropr ia te  symmet r i c  o r  an t i symmetr ic  functional behavior for each flow 

property.  

2.4 BODY FLARE ANALYSIS 

A convenient geometr ical  scheme f o r  descr ibing the shock l aye r  is to t r a n s -  

fo rm it into a cyl indrical  region a s  in the p re sen t  ana lys i s .  

an ax isymmetr ic  body f rus tum o r  f l a r e  complicates  the shock l aye r  geometry  

by introducing a second region bounded by the f l a r e  shock, the bpdy, and an 

a r b i t r a r y  downstream station. In addition, a weak secondary  s h  ck o r  

expansion wave m a y  appear  a t  intersect ion of the bow and f l a r e  shocks which 

equalize the p r e s s u r e  and flow direction on e i ther  s ide  of the s l ip  l ine ema- 

nating f rom the intersection. 

The p resence  of 

\ 

A t rac tab le  approach ta the two region problem involves a sequential  conver-  

gence procedure.  

and af terbody region can be obtained neglecting the p re sence  of the f la re .  

t es t  of the flow conditions a t  the location corresponding to the base  of the 

f l a r e  es tabl ishes  whether the f l a r e  shock i s  attached o r  detached ( t ransonic  

Init ially a single shock, floating m e s h  solution for the nose 

A 

f l a r e ) .  

f l a r e  location o r  to  the base  of the vehicle using the computer s to red  non- 

A f l a r e  and afterbody solution can then b e  c a r r i e d  out to the next  

uniform conditions ahead of the f la re  shock ( s e e  Appendix D). 

has  the following advantages:  

pa rame t r i c  s e r i e s  of f r u s t r u m  calculations can  be  per formed consecutively,  

changing, for  example,  the frustum angle o r  location; ( 2 )  a f te r  a t ime-  

dependent floating f l a r e  shock subroutine i s  developed, bodies with s e v e r a l  

f l a r e s  can be t reated.  

This approach 

(1)  f o r  a given nose-af terbody solution, a 
I 

The procedure  descr ibed  above has  been employed in  the p re sen t  study. 

The f l a r e  solution is obtained using the previously developed governing 

equations and a new coordinate sys t em base  su r face  C ( r )  which in t e r sec t s  

the afterbody normally (F igure  2-4) .  

equations is not requi red  in the f la re  calculation as r>o .  

F 
The spec ia l  f o r m  of the governing 

I 
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. Figure 2-4. Flare Coordinate System 
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Section 3 

FINITE DIFFERENCE REPRESENTATION O F  GOVERNING EQUATIONS 

3 . 1  GENERAL CONSIDERATIONS , 

The var ious  numer ica l  schemes  fo r  representa t ion  of t ime and space  

der ivat ives  in finite difference f o r m  can be broadly categorized (hor a given 

c l a s s  of different ia l  equations) as being e i ther  unconditionally o r  condition- 

ally s table  in t e r m s  of a given t ime  s t e p  At. 

a r e  implicit  in that each  t ime s tep  r equ i r e s  an  i te ra t ion  involving values  of 

the dependent var iab les  a t  both t i m e s  t and t 
0 1 

t = t t At .  Because t h e r e  a r e  no stabil i ty l imitations on the magnitude 

of At, accuracy  requi rements  and the t ime  r a t e  of change of boundary condi- 

t ions establ ish a prac t ica l  l imit  on the s i z e  of the t i m e  step. 

ods a r e  usually applied to  unsteady flow problems that requi re  an  accu ra t e  

stepwise descr ipt ion of a t ime-dependent process .  

\ 
\ 

Unconditionally s table  methods 

> to, for  example,  

1 0  

Implicit  meth-  

Conditionally s table  methods . a r e  subject to the requi rement  that  the magni- 

tude of a given t ime  s tep  does not exceed a value expres sed  in t e r m s  of the 

m e s h  geometry  and the dependent var iab les  involved in the problem. 

example, At <= A X / (  I uI t a )  is the well-known van  Neumann stabil i ty condi- 

tion for  a l inear  one-dimensional fluid flow problem where u = velocity and 

a = sound speed. 

F o r  

The finite difference methods applied to the p re sen t  study a r e  in the condi- 

tionally s table  category. As the governing pa r t i a l  different ia l  equations a r e  

nonlinear, it is not possible to es tabl ish exact s tabi l i ty  requi rements  on At. 

In addition the multidimensional aspec ts  of the problem preclude d i r ec t  u s e  

of existing mathematical  r e su l t s  which a r e  typically based upon one- o r  

two-dimensional analyses  involving uniformly spaced, orthogonal finite dif- 

f e r ence  networks. In spi te  of the idealizations employed, s/ x ability requi re -  

ments  based upon l inear  theory can s e r v e  a s  a useful  guide in specifying 

s table  t ime s tep  magnitudes during the computations. 

13 



I 
A brief descr ipt ion of s e v e r a l  conditionally s table  finite difference schemes  

of f i r s t -  and ' second-order  accuracy  is presented  below a s  applied, for  s im-  

plicity, to thk one-dimensional vec tor  equation. 

(See, f o r  example,  Reference 2 for  a detailed t r ea tmen t  of these  methods. ) 

3 .2  LAX-WENDROFF SECOND-ORDER SCHEME 

The Lax- Wendroff f inite difference equations a r e  basical ly  der ived f r o m  a 

truncated Tay lo r ' s  s e r i e s  in t, i. e . ,  

where the supe r sc r ip t s  r ep resen t  a t ime index and the subscr ip ts  a spat ia l  

index, e. g. , 

In general ,  the  t ime  der ivat ives  a r e  replaced by spa t ia r  der ivat ives  through 

use  of the governing equations and assoc.iated boundary conditions. 

the ma t r ix  A(U) a s  the Jacobian of F with respec t  to  ZS with elements  

Defining 

= a F i / a U . ,  Equation 3-2 becomes 
Ai j  J 

i (3-3) 

i 
I 

Considering A to be a constant mat r ix ,  u s e  of conventional difference quot i -  

ents for  the X-derivatives in Equation 3-3 yields 
3 

i 
The conditional stabil i ty of the sys t em of finite difference Equation 3-4 

been established. 

be  both necessa ry  
Specifically, 

and sufficient 

I 

the von Neumann condition h a s  beenlfounc! tc' 

for  stability. i 
14 



3. 3 TWO-STEP LAX-WENDBOFF SCHEME 

The t d o - s t e p  Lax-Wendroff procedure  offers  the advantage of second-order  

cy through the application of two f i r s t - o r d e r  calculations fo r  each t i m e  

In par t icu lar ,  the m a t r i x  A need not be evaluated during the step.  

c a 1 cula t io n. 

F o r  each point in the mesh,  

(Xi -t TAX, t ,  t 2 A t )  

one init ially obtains in te rmedia te  'data a t  
1 1 

using the relat ion 

(3- 5) 

L 
Fina l  values a t  (X,, t, t A t )  a r e  then calculated using 

F o r  the spec ia l  ca se  F ( U )  = AS,  substi tution of Equation 3-5 into 

Equation 3-6 yields the s e o n d - o x & r  L a w -  Wzndrnff  re la t ion Equation 3-4. 

It should be noted that var ia t ions on the two-step Lax-Wendroff scheme have 

been developed (see,  for  example,  Reference 15). 

3 . 4  LAX FIRST-ORDER SCHEME 

A conditionally s table  first o r d e r  difference scheme  introduced by Lax 

(Reference 16)  expres ses  Equation 3-1 in  the f o r m  

(3- 7) 

, i  ,, 

Note that Equation 3-7 i s  a lmost  identical  to  the  in te rmedia te  re la t ion used  

in the two-step Lax-Wendroff method. The f o r w a r  t ime  difference in 

Equation 3-7 can be rewr i t ten  as I 

1 ,  

1 ,  1 1  

I (3- 8 )  

'U~+l  -77 (AX) 2 [ui-l t '-si+l - 2 s ;  
- -  (ei= A t  2A t 

' (*XI2 

A s  the second t e r m  can be in te rpre ted  a s  the conventional difference 
I 
i 

representa t ion  of a second der ivat ive with r e s p e c t  to X ,  the coefficient of 

this t e r m ,  by analogy with a second-order  v i scous  term, i s  often r e f e r r e d  t o  
I 
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i 

In two dimensions,  2 
a s  an  "ar t i f ic ia l  viscosity" coefficient, p = ( A X ) 4 A  t. 

the "dissipative" t e r m  takes  the f o r m  of a Laplacian in rectangular  coordi-  

nates. T e r m s  appearing in th i s  fo r in  will  be r e f e r r e d  to  a s  damping t e r m s  

in the remainder  of the report .  

Following Reference  5, a three-dimensional  vers ion  of the f i r s t - o r d e r  Lax 

scheme h a s  been used in the present  study. The finite difference t i ine and 

/ 

I 
I 

space  der ivat ive ope ra to r s  a r e  given below. t 

K - 27PK - 
- 7' tK P , m , n  K [ ( 7 ' ~ t 1 , m , n  t b ~ - l , r n , n  Q, m, n)'s a ,  m1 n 

c t 7 P K  
I 

K - 271" 
I t + ( m t l ,  n 231, m-1,  n P , m , n )  n ( Q , m , n t l ,  ' 

I \ 

\ r. 1 1  -t i'tK - 2 1 r K  
4, my n-1 Q, m, 

where 

1 K = J ,  C+ = 0 for  ax i symmet r i c  c a s e  

( 3  -9)  

The damping t e r m  fac to r s  C s ,  

F o r  a genera l  field point C = C 

body, axis  of syrnmetry, and downstream exit plane), the C ' s  a r e  s e t  in 

accordance with appropr ia te  boundary conditions. 

involving mesh  dimensions a r e  introduced in the t ime  derivative.  

pointed out (Reference 5 )  that  in an  ax i symmet r i c  case,  u s e  of geomet r i c  

sca le  fac tors  corresponding to those appearing in the definition of a Laplacian 

in cylindrical  coordinates did not a l t e r  the f inal  r e su l t s  of the t ime-dependent,  

f ixed-mesh calculations. 

Cny and C a r e  equal e i ther  to  unity o r  zero.  9 
= C + =  1 .  At the  network boundaries (shock, 

S n 

No geometr ic  f ac to r s  
I 
It h a s  been 
I 

I 
i 
I 
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The spa t ia l  der ivat ives  a r e  given in t e r m s  of the cen t r a l  d i f fe rence  opera tors :  

, A s  = constant K - F  1 - - - - IFX 
2 A s  l S 1 , m J n  1 - 1 , m , n  

- FK - . 1  EK - 
2An [ 8 ,  mS1, n. 8 ,  m-1,  n 

? 
If As is specified a s  a geometr ical ly  increas ing  function of s, a we1 \ hted 

average  finite difference relat ion is used fo r  evaluating aF/as , e. g. , 

8 - 1  
A s p  = S - S 8 -  1 = A S ~ ( D )  , D = ( A S ~ + ~ / A S ~ ) ,  A s o  = constant l 

At the boundaries, f o r  a given space var iab le  Xi,  one-sided difference ope ra -  

t o r s  a r e  used if the function is odd in X. (i. e. , F ( X . 1  

z e r o  value i s  ass igned fo r  the X - derivat ive if the  function is even in 

X .  ( F ( X i )  = 

vsJ 

= - F ( -  Xi)) while a 
1 1 

i 
F(-Xi)). F o r  example, in the flow field plane of symmetry ,  

1 

vnJ p , p , and E a r e  even functions in 9 while v is a n  odd function in 9. 9 
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Section 4 

, COMPUTER PROGRAM DESCRIPTION 

The bas i c  fea tures  of the F o r t r a n  IV, UNIVAC 1108 computer p r o g r a m  which 

provides  a numer ica l  solution of the governing finite difference equations 

a r e  br ief ly  descr ibed  in  th i s  section. 
I 

i 

4 .1  PROGRAM INPUTS 

The inputs required to pe r fo rm the forebody calculation include: 

1 .  F r e e - s t r e a m  Mach number,  Ma  

2. Ratio of specific hea ts ,  y 

5 3 .  Angle of attack, LY 

4. Initial shock d e t a c h e @  

5. s -d i rec t ion  mesh  in te rva l  fac tors ,  Aso ,  D 

6. Number of s-planes (540)  

7. Number of n-planes ( S . 5 )  

'8. Number of $-planes ( S 9 )  

The body geometry can be input by specifying e i ther  (1) xo, ro, 8,  R, f ,  xB, 

rB' E3 
define a sphere-cone-cyl inder  (F igu re  4- l a ) .  

additional geometr ic  information requi red  i s  the p re f l a re  body angle and the 

coordinates  (x r ) (F igu re  4 - l b ) .  The number of s and n planes used in  

the f la re  network can differ f r o m  those employed in  the ups t r eam forebody 

and s cylinder which cone' 'c' 0 as a r b i t r a r y  functions of s o r  (2 )  s 

F o r  a f l a r e  calculation, the 

F1 F 

calculation; however, the number of $-planes mus t  remain  constant. 

A number of input flags a r e  available which offer the option, ,following the 

completion of a forebody calculation, of (1) stopping, ( 2 )  calling in a new 
I 

case ,  o r  ( 3 )  initiating a f l a r e  calculation using nonuniform u s t r e a m  shock 

l aye r  conditions. 

using uniform f r e e - s t r e a m  conditions. 

viously calculated flow field p rope r t i e s  a s  init ial  values for  a new case .  

/ I  

I 

P 

i I 

In addition, a f l a r e  calculation can  be perlformed d i rec t ly  

Other input flags alllow use  of p r e -  
I 
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i I (a )  FOREBODY GEOMETRY 

(b) FLARE GEOMETRY 

Figure 4-1. Forebody and Flare Input  Geometry Options 
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4 .2  SHOCK LAYER STARTING SOLUTION 

To generate  init ial  values  of the flow p rope r t i e s  at the network points, the 

following procedure  is followed. 

Newtonian solution i s  obtained at the body sur face ,  

i s  then made between the resul t ing sur face  values of flow p rope r t i e s  and 

f r e e - s t r e a m  flow p rope r t i e s  which a r e  a s sumed  as initial postshock condi- 

tions. 

i. e . ,  the init ial  data are always ax isymmetr ic .  

s e t  a t  a constant thickness,  rig = (F-f),, up to  the point where O& s in  (2/Mm). 

Beyond this  point, (F-f); = (F-f)B - 
slope exceeds the f r e e - s t r e a m  Mach angle by a reasonable  margin .  

F o r  a given body geometry,  a modified 

A l inear  interpolation 

F o r  an  a symmet r i c  case ,  these  da ta  a r e  repeated in each $-plane, 

The shock l aye r  i s  initially 
-1  

+ (2Asp)/Mm to ensu re  that the \shock 

4 .3  STABILITY CRITERION 

Applying the conventional one -dimensional f o r m  of the stability condition 

where 0 < 
cr i te r ion  fails .  

located, multiplied by C and assigned a s  the magnitude of the t ime  step.  

2 1 i s  an input factor  which is used when the l inear  stabil i ty 

During the calculation, the minimum A t  i n  the network i s  
- 

4.4 COMPUTATIONAL PROCEDURE 

An idealized schematic  of the forebody computational procedure  i s  shown in 

F igure  4-2. 

the addition of an interpolation subroutine for  determining conditions immedi-  

ately ups t r eam of the portion of the f l a r e  shock wave contained within the f o r e -  

body shock l aye r  ( see  Appendix D for  de ta i l s ) ,  

which, f o r  simplicity,  a r e  not explicitly identified in  Figure 4-2, a r e  

omitted in the f l a r e  calculation because 'F is always g rea t e r  than zero.  

3 ons The s t ruc tu re  of the p r o g r a m  h a s  been designed to  facil i tate modificatl  

of the numerical  p rocedures  employed. In addition, the p r o g r a m  makes  

efficient use of the computer co re  s torage capacity to  avoid t ime-consuming 

A s imi la r  procedure  is followed for the f la re  calculation with 

The special  ax is  re la t ions,  

1 
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CALCULATE 
BODY GEOMETRY 

I 

MOVING OBLIQUE 
SHOCK RELATIONS 

EVALUATE EVALUATE 
M. N, P. Q 

.. 

DETERMINE 
STABLE TIME CALCULATE TEMPORAL AND.  

SPATIAL D I F FE R EN CE 
OPERATORS 

I 

I 
, FINITE Di F FE RENCE 

U( t  + At) = U(t1 + DAMPING TERMS, + At ] +  A t 0  
I SPATIAL DERIVATIVES 

l_",-l.." 
Figure 4-2. Idealized Schematic of Forebody Computational Procedure 1 
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tape handling operat ions.  

r e spec t  to,  fo r  example,  the number  of network points which can be speci-  

f ied,  the flow about some  p rac t i ca l  configurations a t  incidence to  a f r e e  

Although this  r equ i r emen t  i s  a s t r ingent  one with 
I 

I 

s t r # a m  can  be adequately descr ibed  (subject  to  the condition that the calcu-  

lati'ons a re  s table  with increas ing  t ime) .  
I 
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Section 5 

NUMERICAL RESULTS 

A s e r i e s  of t e s t  cases have been run  to es tab l i sh  the operational capabili t ies 

of the p rogram.  Before proceeding to  th ree  -dimensional examples ,  sym-  

m e t r i c  flow c a s e s  w e r e  checked for  consis tency against  both exper imenta l  

and theoret ical  r e su l t s .  \ 
5.1 

Using the p r o g r a m  a s  a blunt-body method, shock l aye r  da ta  were  obtained 

fo r  supersonic  flow about a sphere  at Mach numbers  of approximately 3 ,  4, 

and 5. The exact  Mach numbers  used (2.996, 3.975, and 4.926)  cor respond 

to  the available experimental  data.  

a t  the axis  (F igu re  5-1) and the sur face  p r e s s u r e  dis t r ibut ions (F igure  5-2) 

ACCURACY AND U N I Q U E N E S S  OF  BLUNT NOSE CALCULATIONS 

The calculated shock detachment  dis tance 

? 

Figure 5-1. Shock Detachment Distance--Sphere 
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0 EXPERIMENT (REFERENCE 17) 
FOUR STRIP AS = 1.5O 

I 6 (DEG) 

i 

Figure 5-2. Surface Pressure Distribution - Sphere I 

I 
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are in  reasonable  ag reemen t  with exper imenta l  r e su l t s  when a four  s t r ip ,  

As  

significant change in  converged r e su l t s  was obtained when the ini t ia l  location 

of the bow shock was var ied by a factor  of two; this  r e su l t  i s  c ruc ia l  because  

it suppor ts  the uniqueness of the calculations.  

encountered during the sphere  calculations was  the inabili ty to  obtain valid, 

converged r e su l t s  a t  higher  Mach numbers .  

obtained to es tab l i sh  the na ture  of th i s  difficulty. 

1. 5 " ,  m e s h  a r r a y  is employed. F o r  a given network of points,  no 
I 

/ 
The pr incipal  difficulty 

Insufficient da ta  have been 

5.2 MESH SIZE DEPENDENCE 

Unlike m o s t  blunt-body methods,  the p re sen t  t ime-dependent technique does  

not automatically es tab l i sh  stagnation point flow proper ty  values  as  those 

corresponding to  passage  through a no rma l  shock wave followed by i sen t ropic  

compress ion  to  the body sur face  (assuming s y m m e t r i c  flow). 

been general ly  noted that the r a t e  of approach of flow proper ty  values  to  

the i r  s teady-state  l imi t s  i s  slowest n e a r  the body with sur face  densi ty  being 

a par t icu lar ly  sensi t ive var iab le  in  this  r e spec t .  

behavior of the solution in  the neighborhood of the stagnation point, therefore ,  

affords a c r i t i ca l  t e s t  for  es tabl ishing flow field accuracy.  

F u r t h e r  i t  h a s  

An examination of the 

The t e s t  c a s e  chosen was a sphere  with a fixed f r e e - s t r e a m  Mach number 

of 4. Refe r r ing  to  F igu re  5-3, a reduction of the As increment  f r o m  6" to  1. 5" 

with the number  of shock layer  s t r i p s  inc reas ing  f r o m  two to  four for  the 

l a t t e r  ca se  r e su l t s  i n  acceptable stagnation values of p r e s s u r e ,  density and 

detachment  dis tance.  In cont ras t  to the floating m e s h  r e s u l t s  of Reference 10 

(which u s e s  a different conditionally stable finite difference scheme) ,  u se  of 

special  ax is  re la t ions appea r s  to  lead to l e s s  accura te  r e s u l t s  i n  the p re sen t  

p r o g r a m  relat ive to  r e su l t s  obtained by s t raddl ing the ax is  i f  s y m m e t r y  with 

the finite difference network. Unfortunately, for  the a s y m m e t r i c  flow c a s e  

(a > 0) ,  the l a t t e r  technique i s  not applicable since n e c e s s a r y  s y m m e t r y  

conditions are lost .  

The economic a spec t s  of varying mesh . s i ze  a r e  i id ica ted  in  Table 5-1 in  

t e r m s  of the computing t ime ( F o r t r a n  IV,  UNIVAC 1108) n e c e s s a r y  to  obtain 

converged a n s w e r s  (the ave rage  compilation t ime f o r  the p r p g r a m  of 11 s e c  

i s  included). 
l 
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Figure 5-3. Effect of  Mesh Dimensions on Sphere Stagnation Point Results 
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I 

Table 5-1 

MESH SIZE VARIATION 

No. of No. of Computing 
As Str ips  T ime  Cycles 1 (dF/dt),l T ime 

1.5" 4 600 . o.o(Jo2 3 min, 57sec 

3" 2 400 0.0004 1 min ,  8 s e c  

6" 2 400 0 .000009 49 s e c  

5.3 EMPIRICAL ASPECTS OF STABILITY CRITERION 

A t ime s tep factor ,  denoted by E ,  has  been previously identified i n  the 

definition of the stabil i ty condition on t, i. e . ,  

0 < 
i n  this section to  employ values 

computation leading to valid asymptotic r e su l t s .  

used in  the p r o g r a m  a r e  based upon application of one-dimensional concepts;  

therefore ,  i t  i s  likely that a m o r e  conservative es t imate  based on t h r e e -  

dimehsional theory could b e  establ ished which could reduce the dependence 

on empir ica l  constants.  

- 
- - C(At)linear Y 

(At'actual 
S 1 . It  was found n e c e s s a r y  in  a l a rge  number of the c a s e s  descr ibed  - 

m 0.-8 to 0. 4 to  effect a stable 

The l inear  At predict ions 

Cer ta in  cha rac t e r i s t i c  behavior i n  the t ime varying flow field was noted as 

being indicative of the onset  of instabil i ty.  

of a l ternat ing signs of 

eas i ly  detectable instabil i ty mode. 

ca ses ,  a n  at tempt  to force  stable behavior through ex t r eme  reduction of 

A t  (for example,  use of < 0 . 2 )  can lead to  anomalous flow field resu l t s .  

Because total energy  E and total enthalpy, h m u s t  approach s teady-state  

values which a r e  only a function of f r ee  s t r e a m  conditions, these  proper t ies ,  

which a r e  monitored throughout the field, were  a useful m e a s u r e  of the 

In par t icu lar ,  the appearance 

d F / d t  leading to a corrugated shock shape was a n  

It m u s t  be emphasized that in  some 

t' 

I 
I 

validity of the converged flow field data.  
i I 
I 5.4 SPHERICALLY BLUNTED CONE COMPUTATIONS 

The flow field about a blunted cone with a semi-apex  angle of 24" was 

successfully calculated employing a two s t r ip ,  As = 6"  network. The 
I 

1 
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i 

init ial  and final bow shock posit ions a r e  shown in  F igure  5-4. 

constant AS i nc remen t  l imited the overal l  length of the body to  x / R N  > 3 . 
The r e su l t s  exhibit qualitatively c o r r e c t  t rends  but a r e  not par t icu lar ly  

accura te  s ince a c o a r s e  m e s h  was  employed. 

sys tem base  rad ius  of curva ture ,  R, a t  the sphere-cone junction was s e t  

a t  both unity and "infinity" ( : O  

the sphere  o r  cone values in  o r d e r  to  es t imate  the effect of a curvature 
cliscontinuity on the calculations.  A 1O0/o cleviation in  downst ream shock 

layer  thickness  was  noted between the two eases .  

system base  sur face  with continuous slope and radius  of curva ture  m a y  

el iminate  thi s pe r  tu rbat i  on. 

A ser ious  l imitation i n  the operational range of the p r o g r a m  was  encountered 

Use  of a 

i 

The value of the coordinate 
1 

10 
) corresponding, respect ively,  to either 

\ 

Use of a coordinate 

I 

\ when attempting to  t r e a t  a hemisphere-cyl inder .  Flow p rope r t i e s ,  par t icu-  

l a r ly  p r e s s u r e  and density,  on the afterbody sur face  displayed a consistent,  

unstable tendency to  d e c r e a s e  rapidly during the t ime  dependent p rocess  

and bventually attain negative values.  This  behavior was la te r  noted for 

s eve ra l  sphere-cone c a s e s  involving values of 8 < 20" .  Decreasing A s  

I 

i 

C 

-1 

M = 4  
& 
'y= 1.4 

/' 
/ 

--+---- 
/ 

1 3 
I 

2 
I 

t 

Figure 5-4. Time Dependent Calculation Blunted Cone (0, = 2 4 O )  
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through use  of a special  deck which eliminated +-plane s torage  in  favor of 

increased  s -plane s torage capacity did not c o r r e c t  th i s  situation. 

The var iable  A s  option which i s  intended to  treat long  af terbodies  while 

maintaining sma l l  m e s h  in te rva ls  in the nose regkcm was tes ted  on the 24" 

blunted cone. 

s tep s ize  a t  in te rva ls  along the body was found to bte unstable.  

scheme inc reases  success ive  As s teps  by a geome:ltric factor  nea r  unity, 

e. g. , D = 1. 05. A stable calculation was attained; however, a significant 

per turbat ion in nose region r e su l t s  could be noted, e .  g . ,  the bo& 

displaced outward (an examination of the l i t e r a t u r e  on application ,of t ime  

dependent techniques to flow field problems indica'Les an  emphas is  on blunt 

configurations with minimal  afterbody lengths) .  

A previous var iable  As  scheme involving a doubling of the 

The p resen t  

\shock was 

5 . 5  ANGLE-OF-ATTACK COMPUTATIONS 

The init ial  at tempt to  utilize the three-dimensionan capabili t ies of the 

p r o g r a m  involved a sphere  calculation with the coordinate  sys t em axis  of 

symmet ry  se t  a t  6"  incidence to  the f r e e  s t r eam.  A reasonable  check on 

the p rogram was establ ished as the resul t ing flow- field was approximately 

symmet r i c  about an  axis  para l le l  to  the f r e e  s t r e a m  direct ion and the rotated 

data corresponded to a conventional sphere  solutiom. 

an exact match of CY = 0 "  and rotated CY = 6"  va lues  could possibly be attr ibuted 

to. per turbat ions a r i s ing  f r o m  the a symmet ry  of damping terms associated 

with the axis  re la t ions and the res t r ic t ion  to  a mamariimum of 9 +-planes.  

Small  deviations f r o m  

The previously de scr ibed 24" sphere-cone configur.ation was  successful ly  

run at 6"  angle of attack using 9 +-planes.  ExamEmation of the c i r cum-  

fe ren t ia l  variation of shock layer  thickness ( F i g u r e  5-5)  a t  four stations 

along the body indicates smooth, physically rea l i s t sc  t rends  f rom windward 

( 4 ,  = I T  ) to  leeward ( +  = 0)  planes.  

a resu l t  of the three-dimensional  nature  of the calculations was noted. 

computing t ime for th i s  ca se  was approximately nime minutes  which should 

compare favorably with other three-dimensional  techniques 

No tendency tawai-ds unstable behavior a s  

The 

5 .6  FLARE CALCULATIONS 

The validity of the flare calculations was tes ted by computing a sequence 

of hemi-cyl indrical  f l a r e  c a s e s  considering a uni form oncoming s t r eam,  a 
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cyl indrical  forebody and varying f la re  radius .  

be bounded by sphere  r e su l t s  as  r 

r e s d t s  as  r 

a r e  exhibited when consider ing the variation of shock detachment  dis tance 

with r 

comparable  foreb.ody case  in  that m o r e  t ime  s teps  w e r e  requi red  to attain 

a given value of d F / d t .  

At the t ime of prepara t ion  of this  r epor t ,  the fully coupled forebody-f lare  

vers ion of the p r o g r a m  was  near ing operational s ta tus .  

The resul t ing da ta  should 

- 0 and two-dimensional cylinder 
! I; 

i F 
Examination of F igu re  5-6 indicates  that  c o r r e c t  t r ends  

\ 

The r a t e  of convergence of the f l a r e  c a s e  was less  than a F '  

\ 

5 .7  CONVEX CORNERS 

An init ial  at tempt to  compute a sphere-cone-cyl inder  case  was  unsuccessful.  

A c r i t i ca l  examination of the effect of the c o r n e r  on the stabil i ty of the 

calculations for th i s  ca se  was  complicated by the previously establ ished 

instability noted for  af terbodies  having sma l l  or  z e r o  slope. 
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Section 6 

CONCLUSIONS 

The pr incipal  objective of the p re sen t  study h a s  been to  formulate  and 

mechanize a prac t ica l  three-dimensional  flow field method by ta ing advan- 

tage of the recent  advances in  t ime-dependent computational techniques.  

a r r i v e  a t  an economically feasible  computing method, attention h a s  been 

r e s t r i c t ed  to a. floating m e s h  approach t o  reduce da ta  s torage  requi rements  

associated with the flow field descr ipt ion.  

in the preceding section m u s t  be regarded  in  the na ture  of a p r o g r e s s  r epor t  

\ 
z To 

The s u m m a r y  of r e su l t s  presented  

which desc r ibes  both firm accomplishments  and p re l imina ry  t rends .  

m o s t  encouraging observation i s  that the three-dimensional  mode of calcu-  

lation does not appear  to introduce unstable behavior in cases which can be 

run successfully a t  z,ero angle of attack. 

s t r e a m  flare calculation is a unique resul t .  

The 

In addition, the successful  uniform 

While the difficulties assoc ia ted  with body slope discontinuities were  ant ic i -  

pated, the na ture  of the instabil i ty mechan i sm p resen t  in afterbody calcula-  

tions i s  less obvious. 

p roblem using a modified numer ica l  p rocedure  such a s  the two-step Lax- 

Wendroff method is recommended owing to  the p re sen t  l imitat ions on the 

operational range of the p rogram.  

An in-depth study of this  par t icu lar  aspec t  of the 
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Appendix A 

DERIVATION O F  GOVERNING EQUATIONS IN GENERAL 
ORTHOGONAL CURVILINEAR COORDINATES 

The equations expressing conservat ion of m a s s ,  momentum, and energy  fo r  

the unsteady motion of an  inviscid, nonheat conducting fluid a r e  given below 

in Euler ian form.  

( A - 1 )  (continuity) 9 t v * p F  = o at  

(momentxm) - 

where,  denoting dimensional quantit ies with a b a r ,  

- 
p ’  = = density 

Pw 

’ - p r e s s u r e  P =  2 -  
P w V a  - 

v = - -  - total velocity 
V W  
- 

- specific total  energy E E = - -  
2 

va3 

( A - 2 )  

( A - 3 )  

The energy  equation for  unsteady adiabatic flow m a y  also b e  expres sed  in  

t e r m s  of the specific total enthalpy, h of the fluid: t’ 
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where  I 

s ince 

e = specific internal  energy  and 

1 2  
2 E = e t - V  

1 

F o r  a n  adiabatic p rocess  involving a per fec t  gas  (i. e. , p = pRT; 

= constant) ,  
Cp' cv 

h = - -  Y P  
Y - 1  p ' 

tli e r e f o r e , 

1 2  
2 E t - - v  E = - - - -  

Y -  1 p (A-4) 

Although the p resen t  study is r e s t r i c t ed  to consideration of a per fec t  gas ,  

the extension of the analysis  to t r e a t  a gas  in thermodynamic equilibrium 

i s  s t ra ightforward and p r imar i ly  involves the introduction of a n  empi r i ca l  

descr ipt ion of the required thermodynamic propert ies .  In addition, ce r t a in  

explicit  relationships,  valid for  the perfect  gas  case ,  will  become implici t  

thus leading to i terat ive calculations with a n  attendant i nc rease  in computing 
1 

t ime. i i  
I 

The governing equations will now be wri t ten in genera l  curvi l inear ,  orthogonal 

coordinates ( CY' p, Y) where  
1 1  

(ds )2  = hff2(d*)' t h 2 (dp)2  f h 2 ( d ' f )  2 
P Y 

and 

---+ --r 

V = v  e t v 7 t v T  
C Y C Y  p p  Y Y  

40 



The bas i c  ope ra to r s  requi red  a r e  given by 

Application of these ope ra to r s  to  Equations A-1,  A - 2 ,  and A - 3  yields 

C on ti nu i t y : 

a a (h h p v  ) t v ( h  h p v  ) t ay (h h p v Y )  = 0 (A-5)  
f f P  h h . h  - 

a p ~ a t  a~ p y  CY y c u  P 

Momentum 

CY d i rect ion:  

P direction: 

Y direction: 

a v  

a t  P a y  Y Y 

(A-7) 



Energy: 

The governing equations. will  now be  wri t ten in  conservation-law fo rm,  i. C. , 

\ - 
where U can  r e p r e s e n t  mass, components of momentum in  the coordina e 

directions,  o r  energy. The momentum and energy equations a s s u m e  this 

f o r m  when proper ly  combined with the continuity equation. F o r  example,  

the operation h h h 

equation) yields the expression descr ibing conservat ion of the Q - component 

of momentum. 

p x ( Q  - momentum equation) f vty x (continuity 
f f P Y  

Following a s i m i l a r  procedure  for  the remaining equations, 
-.  - 
U ,  My E, F, and Q a r e  given by 

PVQ 

G = h  h 
P Y  

2 
PV, f P 

' PV, (E+$) 

, f i = h  h 
Y 1  

I 

pvP 

PVP (E f ;) 

2 
P V y  f P  

42 

I 



. .  

Q =  

x = xo(s) - n s i n 0 ( s )  (4 

r = r (s)  t n cos0 ( s )  (b) 

q = +  (c )  

0 

F o r  a rectangular  Ca r t e s i an  coordinate s y s t e m  {x, y, z } ,  the t ransformat ior  

s ca l e  f ac to r s  h, , h p ,  and h y  become unity and Q 

cons iders  a three-dimensional  orthogonal curv i l inear  coordinate s y s  t e m  

{ s ,  n, + }  where  s and n a r e  coordinates  along and no rma l  to, respect ively,  

an  ax i symmet r i c  sur face  descr ibed ,  fo r  convenience, in cyl indrical  po lar  

coordinates  {x,  r ,  Ti.* -&i2t.e-~xi 

norma l  to the x-axis ( s e e  F igu re  A-1) .  

and { x, r ,  4, } sys t ems  is given by 

0. The p r e s e n t  study 

e, 4 , is m e a s u r e d  in  a plane 

The relat ionship between the { s, n, +} 

(A-  10) 

where  8 is the angle between the x-axis  and a tangent to the  r e fe rence  su r face  

S lying in  a c i rcumferent ia l  plane defined by + = constant. 

The t ransformat ion  sca le  f ac to r s  for  the curv i l inear  sys tem become 

I 

I /  

hy = h+ = r 

(A-1 1 )  
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n i' 

i 

Figure A-I.  s, n, cp Curvilinear Coordinate System 

Evaluation of Q(s,  n, + )  r equ i r e s  dctcrniination of the par t ia l  der ivat ives  of 

the t ransformat ion  sca lc  f ac to r s  with r e spec t  to the coordinates ,  

detcrinination of the iiiatrix opera tor  given by 

i. e . ,  

U s c  of Equations A-10 and A-1  1 yields 

0 

cos  e 0 

i 

I I 
I 
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Appendix B 

DEVELOPMENT OF MOVING BOW AND FLARE SHOCK RELATIONS 

The Rankine-Hugoniot shock relat ions wil l  b e  der ived in a f o r m  suitable for  

descr ibing flow p rope r t i e s  behind a moving three-dimensional  shock surface.  

A s  before,  velocit ies a r e  normalized by V,, densi ty  by p,, and pl lessure  

by p,V, . 
into the equations, thus the equations re ta in  their  or iginal  form.  

2 \ 
This choice of nondimensionalization does not introduce, constants 

Initially, the shock geometry  and the total  velocity vector  immediately 

u p s t r e a m  of the shock mus t  b e  expressed  in t e r m s  of the previously defined 

Is, n, 41 coordinate system. 

B. 1 SHOCK GEOMETRY 

Define the shock sur face  by  the relat ion g ( s ,  n, +: t) = 0. 
the sur face  is, therefore ,  given by 

The unit  normal  becomes  (F igu re  B-1) 

--c --c -c 4 

N = Q = cos  p, e +- cospn  en +- cos  p e 
G S 9 4  

where  

B. 2 UPSTREAM VELOCITY VECTOR 

The no rma l  to 

In o r d e r  to resolve the total  velocity vector  immediately u p s t r e a m  of the bow 

o r  f l a r e  shock wave into components normal  and tangential  to the shock 
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I 

1 
Z 

J 

Figure B-1. Orientation of Normal to  Shock Surface 

sui-face, i t  is convenient to expres s  the velocity vector  in Is, n, +I coordinates ,  

coordinates,  i. e . ,  

4 - -t 
--+ 
V = v e + v  e t v  

s s  n 0 n +oe+ 
0 

4 (B-2) 

iVhen treating the segment  of the f l a r e  shock lying within the forebody shock 

layer ,  the nondiniensional ups t r eam coniponents v 

through interpolation of data yielded by the converggd fo?ebody calculation. 

F o r  the bow shock o r  portion of the f l a r e  shock beyond the bow-flare ,shock 

intersect ion point, f r ee -  s t r e a m  conditions prevai l ;  therefore ,  one obtains 

, vn , and v a t e  obtained 
S +O 

%" 
I 

V = v  = cos cr cos 8 t s in  cr s in  8 cos  + 
S S 
0 co 

V = v  = - c o s  CY s in  e t  s in  CY cos  8 cos  Q n n 
0 .a 

' ! I  
i 
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The adgle of a t tack,  cr, is 

and the axis  of s y m m e t r y  

measu red  between the f r e e - s t r e a m  velocity vec tor  

of the vehicle. Because the p r e s e n t  study i s  

r e s t r i c t e d  to considerat ion of an  ax i symmet r i c  vehicle  a t  incidence, the 

flow f ie ld  has  a s ingle  plane of s y m m e t r y  defined by the x-axis  and the f r e e -  

s t r e a m  velocity vector .  

The normal  component of the u p s t r e a m  velocity is given by 

vN ’ A s  the tangential  component, V , i s  conserved  a c r o s s  the shock wave, 

Po) Po, and the shock velocity Uscan b e  introduced into the moving no rma l  

shock relat ions to de te rmine  postshock flow proper t ies .  

F igu re  B-2, conservat ion of m a s s ,  no rma l  momentum and energy  a c r o s s  

the shock a r e  expres sed  by  

T O  0 

Refer r ing  to 

Y P O l  2 ‘ N t l u  2 - t - u  = - -  
Y - 1  p 2 0 Y - 1  pN 2 N 

0 

I 

(33-7) 

Use of Equation B-7 r e s t r i c t s  the remainder  of the ana lys i s  to considerat ion 

of a perfect  gas. 

Introducing Equations B-5 and B-7 into Equation B-6 yields 

I 
I I 

1 1  

2 1  
u -  N - u o ( Y  f 1) (?’ uo2) - ug 

o r ,  u s i n g u  = V - U a n d u  = VN - Us, 
0 NO S N 

A7 
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I 
Figure B-2. Transformation Relations Between Moving and Stationary Shock Waves 

\ 
I 

Solving for  the remaining postshock proper t ies  

V N  ) can  be obtained through u s e  of 
0 

PO 
A n  expression for U ( p N ;  po, 

Equations B-8 and B-9: 
S 

(B-10)  

(B-1 1 )  

I I 



For uniform f r e e - s t r e a m  conditions ahead of the shock, Equations B-8 
through B- 11 become 

2v  
- - VN t 2us (B-12) vN - ( V  NOD - U,)(Y-I- 1) 

OD 

us = 

1 - ] ' vN, 

Finally, the components of velocity behind the shock a r e  given by 

v = v f ( v N -  VN ) c o s  p s  
S S 

0 0 

v = v  n t ( V N - V N ) C O S p n  n 
0 0 

4) 
= v -I- (VN - VN ) cos 'p 

- $0 0 

where  

1 - ag 
3s cos p = 

G (1  t 2) S 

(B-13) :. 
(33-15) 

(B-14) 

(B-16) 

(B-17) 

(B-18) 

(B-19) 

(B- 20) 

+!, 

(B-21) 

The descr ipt ion of postshock flow p rope r t i e s  in t e r m s  of shock geometry,  

velocity, and u p s t r e a m  conditions is now complete. 



Shock Relatio’ns at the Axis :  

Ilefine the s h o c k  sur face  by 

i 
g ( S J  n J $ J t )  ’ n - F(s,$,t) ’ 0 

Then 

, 1  
, G  

- -  <:os pn - 

A S  r -0 ,  F-Fo and 8F/i3$--+0 

S i n c e  F is a regular  function in the neighborhood of 

‘ S  

s = 0 

(B-22)  

(B-23)  

I 

I 

~n the 0 plane,  = 0 t he re fo re ,  the geometr ic  shock relat ions 
reduce to 0 

0 , Go’ 
-( ;:) 

c o s  p = 
S 

G 0 (I$-) 

1 cos  p = - 
Go 

cos/?+ = 0 (Note that /? = X / 2  -pn  in 

i 
S 

50 



i 

i 

i 

Appendix C 

/ DERIVATION O F  SPECIAL FORM O F  GOVERNING EQUATIONS 
' VALID AT THE AXIS O F  SYMMETRY 

! 

The vehicle  ax is  of s y m m e t r y  which coincides with the x-ax is  9 i s  a regular  

l ine of the flow field and a s ingular  line of the (s, n, $)-coordinate  sys tem.  

A l imiting f o r m  of the governing equations mus t  therefore  be der ived which 

does not display s ingular  behavior a s  r-0. The  conservation-law f o r m  of 

the equations was previously given by Equation 2-1 as I 
i 

a '+  - a41 [(l  t g )  P ( U ) ]  t Q(U)  = 0 

t 

, 
Differentiating Equation C-1 with r e spec t  to s and taking the l inii t  as 

r - 0, one obtains 

IC-2) 

A conventional application of L'Hospital 's  ru l e  was not possible  in obtaining 

this  l imiting form because v 

case.  

a t  the ax is  does not vanish in the a s y m m e t r i c  
S 

I I 
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Near s = 0, R = R 
su r face ) ,  therefore ,  ( a R / a s )  = 0. In addition, a t  s = 0 

= constant (hemispher ica l  coordinate sys t em re fe rence  
0 

0 

v = v cos$ 
S 

0 
S 

v : -v sin$ 
S Q 0 

where v ( s ,  n)  i s  the value of v in the plane $ = 0 (vs = 0 for  CY : 0 ) .  
S 

0 
S 

0 

F o r  convenience, the calculations a r e  performed in the $ = 0 plane. 

$ s = o  the  $-momentum equation because (av / a t )  = O ,  Equation C-2 

a 
at  4 - a [ ( 1  sr) n No] -I - ;l”) [”3’,.] - -I Qo = 0 

i3M 

d n  
0 0 

where 

u =  
0 

P 

PVS 

PVn 

P E  

, M =  
0 

P = v u  
0 9 0  

and 

Pvn 

2pv v - R a ( ~ v 3  2 -t P) 
s n  o as  

1 
*o = x- 

0 

2 2 
P(Vn - v S ) - p  

( C - 3 )  

J 

N =  
0 

I 
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The shock layer  t ransformat ion  (Subsection 2. 2 )  r equ i r e s  u se  of the follow- 

ing differential  opera tors :  

The additional second-order  differential  opera tor  requi red  for the axis  

equations is  given by 

At s = 0, s ince 

Applying the t ransformation relations a t  the axis,  Equation C- 3 becomes  
i 

I 

n au 
0 0 

(C-41 I 
i 
i 
i 

Evaluation of the finite difference analog of Equation C-4 i s  performed in 

upper half of the plane of symmet ry  ($ = 0). i 
I 
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i Appendix D 
’ 

DETERMINATION OF UPSTREAM FLARE SHOCK CONDITIONS 
I 

S The nonuniform conditions immediately u p s t r e a m  of the moving f l a r e  shock 

m u s t  be de te rmined  for  each time s tep  during the calculation. 

geometr ic  tests are applied to es tab l i sh  the location of a given f l a r e  shock 

point re la t ive  to  the converged forebody shock l aye r  network. 

points lying above the bow shock a r e  t rea ted  d i rec t ly  using f r e e - s t r e a m  

conditions. 

for  example,  the quadr i la te ra l  I-11-111-IV shown in F igu re  D-1. 

A s e t  of logical 

F l a r e  shock 

, 

\ 
The remaining points a r e  located within a given network element ,  

An in t e r -  

, polation procedure  i s  then applied to de te rmine  values of the forebody shock 
\ l ayer  proper t ies  a t  the f l a r e  shock point in question. 
i 
i used in the p re sen t  analysis  i s  descr ibed  in detail  below. 

The interpolation s c h e m e  

A s e t  of re la t ions can  be der ived which t r ans fo rm an  a r b i t r a r y  quadr i la te ra l  

in the (x, r )  plane into a unit squa re  in the (u, v )  plane (F igu re  D-2). Lett ing 

~ = a u t b v  
X X 

+ cxuv t dx 

r = a u t b  v t c uv t d r r r r 
i 

the coefficients can be evaluated in t e r m s  of the coordinates  of four a r b i t r a r y  

points in  the (x, r )  plane which define the quadr i la te ra l  in question 

d -  - r10 - a -  
X - x l o  - xoo r 

01 - b = r  - xoo r b = xol 
X 

00 - ( r l o  t r 0 1 )  c X = x  11 t x  00 - (xl0 + x o l )  c r  = r l l  t r  

00 d = x  
X 00  

d = I  r 
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Figure D-?. Representative Forebody and Flare Shock Layer Networks 
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Figure 0-2. Geometric Weighting Factor Transformation 
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Because the points m u s t  f o r m  a closed 

cyclic ifashion, e .  g . ,  points (x 

the quadr i la te r a1 . 
00’ 00) 

f igure,  they m u s t  be  identified in 

and (x r ) cannot f o r m  a s ide of 
11’ 11 

Solving for  u and v in t e r m s  of a point (x, r )  contained within the quadri la teral  

r - b v - d  

a r  r 

r r 
s c  v u =  

1 / 2  
where  

I 

(sign chosen such that  0 5 v 5 1) I - B  f [ B 2 - 4 A C l  y =  2 A  

and 

A = b c  - b c  x r  r x  

B = r c  - xc  t d b - a b t crdx - cxdr 
X r r x  X I -  

C = d ( r -  X d r )  - dr (x  - dx) 

Using the geometr ic  weighting fac tors  u and v corresponding to a given point 

(x, r )  in the quadri la teral ,  any flow property,  q ,  can be evaluated at (x, r )  

using the relation 

q = au t b v  t cuv t d 

where 

910 - 9 0 0  a =  

90 0 d =  

a n d q  ij - - q(xij, 1. .) 
‘J 

57 


