1,737 research outputs found

    Emerging Genomic and Proteomic Evidence on Relationships Among the Animal, Plant and Fungal Kingdoms

    Get PDF
    Sequence-based molecular phylogenies have provided new models of early eukaryotic evolution. This includes the widely accepted hypothesis that animals are related most closely to fungi, and that the two should be grouped together as the Opisthokonta. Although most published phylogenies have supported an opisthokont relationship, a number of genes contain a tree-building signal that clusters animal and green plant sequences, to the exclusion of fungi. The alternative tree-building signal is especially intriguing in light of emerging data from genomic and proteomic studies that indicate striking and potentially synapomorphic similarities between plants and animals. This paper reviews these new lines of evidence, which have yet to be incorporated into models of broad scale eukaryotic evolution

    Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs

    Get PDF
    Background: Cyclin-dependent kinases (CDKs) are a large family of proteins that function in a variety of key regulatory pathways in eukaryotic cells, including control over the cell cycle and gene transcription. Among the most important and broadly studied of these roles is reversible phosphorylation of the C-terminal domain (CTD) of RNA polymerase II, part of a complex array of CTD/protein interactions that coordinate the RNAP II transcription cycle. The RNAP CTD is strongly conserved in some groups of eukaryotes, but highly degenerate or absent in others; the reasons for these differences in stabilizing selection on CTD structure are not clear. Given the importance of reversible phosphorylation for CTD-based transcription, the distribution and evolutionary history of CDKs may be a key to understanding differences in constraints on CTD structure; however, the origins and evolutionary relationships of CTD kinases have not been investigated thoroughly. Moreover, although the functions of most CDKs are reasonably well studied in mammals and yeasts, very little is known from most other eukaryotes. Results: Here we identify 123 CDK family members from animals, plants, yeasts, and four protists from which genome sequences have been completed, and 10 additional CDKs from incomplete genome sequences of organisms with known CTD sequences. Comparative genomic and phylogenetic analyses suggest that cell-cycle CDKs are present in all organisms sampled in this study. In contrast, no clear orthologs of transcription-related CDKs are identified in the most putatively ancestral eukaryotes, Trypanosoma or Giardia. Kinases involved in CTD phosphorylation, CDK7, CDK8 and CDK9, all are recovered as well-supported and distinct orthologous families, but their relationships to each other and other CDKs are not well-resolved. Significantly, clear orthologs of CDK7 and CDK8 are restricted to only those organisms belonging to groups in which the RNAP II CTD is strongly conserved. Conclusions: The apparent origins of CDK7 and CDK8, or at least their conservation as clearly recognizable orthologous families, correlate with strong stabilizing selection on RNAP II CTD structure. This suggests coevolution of the CTD and these CTD-directed CDKs. This observation is consistent with the hypothesis that CDK7 and CDK8 originated at about the same time that the CTD was canalized as the staging platform RNAP II transcription. Alternatively, extensive CTD phosphorylation may occur in only a subset of eukaryotes and, when present, this interaction results in greater stabilizing selection on both CTD and CDK sequences. Overall, our results suggest that transcription-related kinases originated after cell-cycle related CDKs, and became more evolutionarily and functionally diverse as transcriptional complexity increased. Originally published BMC Genomics, Vol. 5, No. 69, Sep 200

    The largest subunit of RNA polymerase II from the Glaucocystophyta: functional constraint and short-branch exclusion in deep eukaryotic phylogeny

    Get PDF
    BACKGROUND: Evolutionary analyses of the largest subunit of RNA polymerase II (RPB1) have yielded important and at times provocative results. One particularly troublesome outcome is the consistent inference of independent origins of red algae and green plants, at odds with the more widely accepted view of a monophyletic Plantae comprising all eukaryotes with primary plastids. If the hypothesis of a broader kingdom Plantae is correct, then RPB1 trees likely reflect a persistent phylogenetic artifact. To gain a better understanding of RNAP II evolution, and the presumed artifact relating to green plants and red algae, we isolated and analyzed RPB1 from representatives of Glaucocystophyta, the third eukaryotic group with primary plastids. RESULTS: Phylogenetic analyses incorporating glaucocystophytes do not recover a monophyletic Plantae; rather they result in additional conflicts with the most widely held views on eukaryotic relationships. In particular, glaucocystophytes are recovered as sister to several amoebozoans with strong support. A detailed investigation shows that this clade can be explained by what we call "short-branch exclusion," a phylogenetic artifact integrally associated with "long-branch attraction." Other systematic discrepancies observed in RPB1 trees can be explained as phylogenetic artifacts; however, these apparent artifacts also appear in regions of the tree that support widely held views of eukaryotic evolution. In fact, most of the RPB1 tree is consistent with artifacts of rate variation among sequences and co-variation due to functional constraints related to C-terminal domain based RNAP II transcription. CONCLUSION: Our results reveal how subtle and easily overlooked biases can dominate the overall results of molecular phylogenetic analyses of ancient eukaryotic relationships. Sources of potential phylogenetic artifact should be investigated routinely, not just when obvious "long-branch attraction" is encountered

    Functional Unit of the RNA Polymerase II C-Terminal Domain Lies within Heptapeptide Pairs 

    Get PDF
    Unlike all other RNA polymerases, the largest subunit (RPB1) of eukaryotic DNA-dependent RNA polymerase II (RNAP II) has a C-terminal domain (CTD) comprising tandemly repeated heptapeptides with the consensus sequence Y-S-P-T-S-P-S. The tandem structure, heptad consensus, and most key functions of the CTD are conserved between yeast and mammals. In fact, all metazoans, fungi, and green plants examined to date, as well as the nearest protistan relatives of these multicellular groups, contain a tandemly repeated CTD. In contrast, the RNAP II largest subunits from many other eukaryotic organisms have a highly degenerate C terminus or show no semblance of the CTD whatsoever. The reasons for intense stabilizing selection on CTD structure in certain eukaryotes, and its apparent absence in others, are unknown. Here we demonstrate, through in vivo genetic complementation, that the essential functional unit of the yeast CTD is contained within pairs of heptapeptides. Insertion of a single alanine residue between diheptads has little phenotypic effect, while increasing the distance between diheptads produces a mostly quantitative effect on yeast cell growth. We further explore structural constraints on the CTD within an evolutionary context and propose selective mechanisms that could maintain a global tandem structure across hundreds of millions of years of eukaryotic evolution. Originally published Eukaryotic Cell, Vol. 3, No. 3, June 200

    Australian Cotton Germplasm Resources

    Get PDF

    Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans

    Get PDF
    Background The acquisition of complex transcriptional regulatory abilities and epigenetic machinery facilitated the transition of the ancestor of apicomplexans from a free-living organism to an obligate parasite. The ability to control sophisticated gene expression patterns enabled these ancient organisms to evolve several differentiated forms, invade multiple hosts and evade host immunity. How these abilities were acquired remains an outstanding question in protistan biology. Results In this work, we study SET domain bearing genes that are implicated in mediating immune evasion, invasion and cytoadhesion pathways of modern apicomplexans, including malaria parasites. We provide the first conclusive evidence of a horizontal gene transfer of a Histone H4 Lysine 20 (H4K20) modifier, Set8, from an animal host to the ancestor of apicomplexans. Set8 is known to contribute to the coordinated expression of genes involved in immune evasion in modern apicomplexans. We also show the likely transfer of a H3K36 methyltransferase (Ashr3 from plants), possibly derived from algal endosymbionts. These transfers appear to date to the transition from free-living organisms to parasitism and coincide with the proposed horizontal acquisition of cytoadhesion domains, the O-glycosyltransferase that modifies these domains, and the primary family of transcription factors found in apicomplexan parasites. Notably, phylogenetic support for these conclusions is robust and the genes clearly are dissimilar to SET sequences found in the closely related parasite Perkinsus marinus, and in ciliates, the nearest free-living organisms with complete genome sequences available. Conclusions Animal and plant sources of epigenetic machinery provide new insights into the evolution of parasitism in apicomplexans. Along with the horizontal transfer of cytoadhesive domains, O-linked glycosylation and key transcription factors, the acquisition of SET domain methyltransferases marks a key transitional event in the evolution to parasitism in this important protozoan lineage

    Another Drop in Water Vapor

    Get PDF
    In 2000 a sudden severe drop in stratospheric water vapor levels interrupted the supposed long-term increase of this greenhouse gas, an important contributor to global warming and climate variability. Satellite sensors observed a recovery in the following years, hidden behind a large variability. More recently, during 2011 and 2012, measurements revealed another severe drop in stratospheric water vapor concentrations

    Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 2: Data analysis

    Get PDF
    Assessing the performance of a MOD-OA horizontal axis wind turbine connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. The detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three models of wind turbine reactive power control are presented. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. Even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level

    Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 1: Executive summary

    Get PDF
    Primary results are summarized for a three-part study involving the effects of connecting a MOD-OA wind turbine generator to an isolated diesel power system. The MOD-OA installation considered was the third of four experimental nominal 200 kW wind turbines connected to various utilities under the Federal Wind Energy Program and was characterized by the highest wind energy penetration levels of four sites. The study analyses address: fuel displacement, dynamic interaction, and three modes of reactive power control. These analyses all have as their basis the results of the data acquisition program conducted on Block Island, Rhode Island

    Bully Prevention in Positive Behavior Support

    Get PDF
    • …
    corecore