112 research outputs found

    Vertex similarity in networks

    Full text link
    We consider methods for quantifying the similarity of vertices in networks. We propose a measure of similarity based on the concept that two vertices are similar if their immediate neighbors in the network are themselves similar. This leads to a self-consistent matrix formulation of similarity that can be evaluated iteratively using only a knowledge of the adjacency matrix of the network. We test our similarity measure on computer-generated networks for which the expected results are known, and on a number of real-world networks

    Finding community structure in networks using the eigenvectors of matrices

    Get PDF
    We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as "modularity" over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a new centrality measure that identifies those vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of real-world complex networks.Comment: 22 pages, 8 figures, minor corrections in this versio

    KASCADE-Grande Limits on the Isotropic Diffuse Gamma-Ray Flux between 100 TeV and 1 EeV

    Get PDF
    KASCADE and KASCADE-Grande were multi-detector installations to measure individual air showers of cosmic rays at ultra-high energy. Based on data sets measured by KASCADE and KASCADE-Grande, 90% C.L. upper limits to the flux of gamma-rays in the primary cosmic ray flux are determined in an energy range of 1014−1018{10}^{14} - {10}^{18} eV. The analysis is performed by selecting air showers with a low muon content as expected for gamma-ray-induced showers compared to air showers induced by energetic nuclei. The best upper limit of the fraction of gamma-rays to the total cosmic ray flux is obtained at 3.7×10153.7 \times {10}^{15} eV with 1.1×10−51.1 \times {10}^{-5}. Translated to an absolute gamma-ray flux this sets constraints on some fundamental astrophysical models, such as the distance of sources for at least one of the IceCube neutrino excess models.Comment: Published in The Astrophysical Journal, Volume 848, Number 1. Posted on: October 5, 201

    A new method to measure the attenuation of hadrons in extensive air showers

    Full text link
    Extensive air showers are generated through interactions of high-energy cosmic rays impinging the Earth's atmosphere. A new method is described to infer the attenuation of hadrons in air showers. The numbers of electrons and muons, registered with the scintillator array of the KASCADE experiment are used to estimate the energy of the shower inducing primary particle. A large hadron calorimeter is used to measure the hadronic energy reaching observation level. The ratio of energy reaching ground level to the energy of the primary particle is used to derive an attenuation length of hadrons in air showers. In the energy range from 10610^6 GeV to 3⋅1073\cdot10^7 GeV the attenuation length obtained increases from 170 \gcm2 to 210 \gcm2. The experimental results are compared to predictions of simulations based on contemporary high energy interaction models.Comment: accepted for publication in Physical Review
    • 

    corecore