15,717 research outputs found
Strongly modulated transmissions in gapped armchair graphene nanoribbons with sidearm or on-site gate voltage
We propose two schemes of field-effect transistor based on gapped armchair
graphene nanoribbons connected to metal leads, by introducing sidearms or
on-site gate voltages. We make use of the band gap to reach excellent
switch-off character. By introducing one sidearm or on-site gate to the
graphene nanoribbon, conduction peaks appear inside the gap regime. By further
applying two sidearms or on-site gates, these peaks are broadened to conduction
plateaus with a wide energy window, thanks to the resonance from the dual
structure. The position of the conduction windows inside the gap can be fully
controlled by the length of the sidearms or the on-site gate voltages, which
allows "on" and "off" operations for a specific energy window inside the gap
regime. The high robustness of both the switch-off character and the conduction
windows is demonstrated and shows the feasibility of the proposed dual
structures for real applications.Comment: 6 pages, 6 figure
A Parameterized Centrality Metric for Network Analysis
A variety of metrics have been proposed to measure the relative importance of
nodes in a network. One of these, alpha-centrality [Bonacich, 2001], measures
the number of attenuated paths that exist between nodes. We introduce a
normalized version of this metric and use it to study network structure,
specifically, to rank nodes and find community structure of the network.
Specifically, we extend the modularity-maximization method [Newman and Girvan,
2004] for community detection to use this metric as the measure of node
connectivity. Normalized alpha-centrality is a powerful tool for network
analysis, since it contains a tunable parameter that sets the length scale of
interactions. By studying how rankings and discovered communities change when
this parameter is varied allows us to identify locally and globally important
nodes and structures. We apply the proposed method to several benchmark
networks and show that it leads to better insight into network structure than
alternative methods.Comment: 11 pages, submitted to Physical Review
Recommended from our members
Unraveling the Cationic and Anionic Redox Reactions in a Conventional Layered Oxide Cathode
Increasing interest in high-energy lithium-ion batteries has triggered the demand to clarify the reaction mechanism in battery cathodes during high-potential operation. However, the reaction mechanism often involves both transition-metal and oxygen activities that remain elusive. Here we report a comprehensive study of both cationic and anionic redox mechanisms of LiNiO2 nearly full delithiation. Selection of pure LiNiO2 removes the complication of multiple transition metals. Using combined X-ray absorption spectroscopy, resonant inelastic X-ray scattering, and operando differential electrochemical mass spectrometry, we are able to clarify the redox reactions of transition metals in the bulk and at the surface, reversible lattice oxygen redox, and irreversible oxygen release associated with surface reactions. Many findings presented here bring attention to different types of oxygen activities and metal-oxygen interactions in layered oxides, which are of crucial importance to the advancement of a Ni-rich layered oxide cathode for high capacity and long cycling performance
Climate variation and incidence of Ross river virus in Cairns, Australia: a time-series analysis.
In this study we assessed the impact of climate variability on the Ross River virus (RRv) transmission and validated an epidemic-forecasting model in Cairns, Australia. Data on the RRv cases recorded between 1985 and 1996 were obtained from the Queensland Department of Health. Climate and population data were supplied by the Australian Bureau of Meteorology and the Australian Bureau of Statistics, respectively. The cross-correlation function (CCF) showed that maximum temperature in the current month and rainfall and relative humidity at a lag of 2 months were positively and significantly associated with the monthly incidence of RRv, whereas relative humidity at a lag of 5 months was inversely associated with the RRv transmission. We developed autoregressive integrated moving average (ARIMA) models on the data collected between 1985 to 1994, and then validated the models using the data collected between 1995 and 1996. The results show that the relative humidity at a lag of 5 months (p < 0.001) and the rainfall at a lag of 2 months (p < 0.05) appeared to play significant roles in the transmission of RRv disease in Cairns. Furthermore, the regressive forecast curves were consistent with the pattern of actual values
Zero-temperature criticality in the two-dimensional gauge glass model
The zero-temperature critical state of the two-dimensional gauge glass model
is investigated. It is found that low-energy vortex configurations afford a
simple description in terms of gapless, weakly interacting vortex-antivortex
pair excitations. A linear dielectric screening calculation is presented in a
renormalization group setting that yields a power-law decay of spin-wave
stiffness with distance. These properties are in agreement with low-temperature
specific heat and spin-glass susceptibility data obtained in large-scale
multi-canonical Monte Carlo simulations.Comment: 4 pages, 4 figure
Comparison of chemical profiles and effectiveness between Erxian decoction and mixtures of decoctions of its individual herbs : a novel approach for identification of the standard chemicals
Acknowledgements This study was partially supported by grants from the Seed Funding Programme for Basic Research (Project Number 201211159146 and 201411159213), the University of Hong Kong. We thank Mr Keith Wong and Ms Cindy Lee for their technical assistances.Peer reviewedPublisher PD
Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity conditions
Most practical combustion processes, as well as fires and explosions, exhibit some characteristics of turbulent diffusion flames. For hydrocarbon fuels, the presence of soot particles significantly increases the level of radiative heat transfer from flames. In some cases, flame radiation can reach up to 75 percent of the heat release by combustion. Laminar diffusion flame results show that radiation becomes stronger under reduced gravity conditions. Therefore, detailed soot formation and radiation must be included in the flame structure analysis. A study of sooting turbulent diffusion flames under reduced-gravity conditions will not only provide necessary information for such practical issues as spacecraft fire safety, but also develop better understanding of fundamentals for diffusion combustion. In this paper, a summary of the work to date and of future plans is reported
- …