39,308 research outputs found

    High-sensitivity microfluidic calorimeters for biological and chemical applications

    Get PDF
    High-sensitivity microfluidic calorimeters raise the prospect of achieving high-throughput biochemical measurements with minimal sample consumption. However, it has been challenging to realize microchip-based calorimeters possessing both high sensitivity and precise sample-manipulation capabilities. Here, we report chip-based microfluidic calorimeters capable of characterizing the heat of reaction of 3.5-nL samples with 4.2-nW resolution. Our approach, based on a combination of hard- and soft-polymer microfluidics, provides both exceptional thermal response and the physical strength necessary to construct high-sensitivity calorimeters that can be scaled to automated, highly multiplexed array architectures. Polydimethylsiloxane microfluidic valves and pumps are interfaced to parylene channels and reaction chambers to automate the injection of analyte at 1 nL and below. We attained excellent thermal resolution via on-chip vacuum encapsulation, which provides unprecedented thermal isolation of the minute microfluidic reaction chambers. We demonstrate performance of these calorimeters by resolving measurements of the heat of reaction of urea hydrolysis and the enthalpy of mixing of water with methanol. The device structure can be adapted easily to enable a wide variety of other standard calorimeter operations; one example, a flow calorimeter, is described

    Money, moral transgressions, and blame

    No full text
    Two experiments tested participants' attributions for others' immoral behaviors when conducted for more versus less money. We hypothesized and found that observers would blame wrongdoers more when seeing a transgression enacted for little rather than a lot of money, and that this would be evident in observers' hand-washing behavior. Experiment 1 used a cognitive dissonance paradigm. Participants (N = 160) observed a confederate lie in exchange for either a relatively large or a small monetary payment. Participants blamed the liar more in the small (versus large) money condition. Participants (N = 184) in Experiment 2 saw images of someone knocking over another to obtain a small, medium, or large monetary sum. In the small (versus large) money condition, participants blamed the perpetrator (money) more. Hence, participants assigned less blame to moral wrong-doers, if the latter enacted their deed to obtain relatively large sums of money. Small amounts of money accentuate the immorality of others' transgressions

    Comparisons and Applications of Four Independent Numerical Approaches for Linear Gyrokinetic Drift Modes

    Full text link
    To help reveal the complete picture of linear kinetic drift modes, four independent numerical approaches, based on integral equation, Euler initial value simulation, Euler matrix eigenvalue solution and Lagrangian particle simulation, respectively, are used to solve the linear gyrokinetic electrostatic drift modes equation in Z-pinch with slab simplification and in tokamak with ballooning space coordinate. We identify that these approaches can yield the same solution with the difference smaller than 1\%, and the discrepancies mainly come from the numerical convergence, which is the first detailed benchmark of four independent numerical approaches for gyrokinetic linear drift modes. Using these approaches, we find that the entropy mode and interchange mode are on the same branch in Z-pinch, and the entropy mode can have both electron and ion branches. And, at strong gradient, more than one eigenstate of the ion temperature gradient mode (ITG) can be unstable and the most unstable one can be on non-ground eigenstates. The propagation of ITGs from ion to electron diamagnetic direction at strong gradient is also observed, which implies that the propagation direction is not a decisive criterion for the experimental diagnosis of turbulent mode at the edge plasmas.Comment: 12 pages, 10 figures, accept by Physics of Plasma

    Modeling pulsar time noise with long term power law decay modulated by short term oscillations of the magnetic fields of neutron stars

    Full text link
    We model the evolution of the magnetic fields of neutron stars as consisting of a long term power-law decay modulated by short term small amplitude oscillations. Our model predictions on the timing noise ν¨\ddot\nu of neutron stars agree well with the observed statistical properties and correlations of normal radio pulsars. Fitting the model predictions to the observed data, we found that their initial parameter implies their initial surface magnetic dipole magnetic field strength ~ 5E14 G at ~0.4 year old and that the oscillations have amplitude between E-8 to E-5 and period on the order of years. For individual pulsars our model can effectively reduce their timing residuals, thus offering the potential of more sensitive detections of gravitational waves with pulsar timing arrays. Finally our model can also re-produce their observed correlation and oscillations of the second derivative of spin frequency, as well as the "slow glitch" phenomenon.Comment: 10 pages, 6 figures, submitted to IJMPD, invited talk in the 3rd Galileo-XuGuangqi Meeting}, Beijing, China, 12-16 October 201

    Optimized Synthesis and Structural Characterization of the Borosilicate MCM-70

    Get PDF
    A structure analysis of the borosilicate zeolite MCM-70, whose synthesis had been patented in 2003, was reported in 2005. Unfortunately, that structure analysis was somewhat ambiguous. Anisotropic line broadening made it difficult to model the peak shape, some peaks in the electron density map could not be interpreted satisfactorily, the framework geometry was distorted, and MAS NMR results were partially contradictory. In an attempt to resolve some of these points, an optimization of the synthesis was undertaken, and the structure was reinvestigated. The structure was solved from synchrotron powder diffraction data collected on an as-synthesized sample (Pmn2_1, a = 13.3167(1) Ă…, b = 4.6604(1) Ă…, c = 8.7000(1) Ă…) using a powder charge-flipping algorithm. The framework topology, with a 1-dimensional, 10-ring channel system, is identical to the one previously reported. However, the B in this new sample was found to be ordered in the framework, fully occupying one of the four tetrahedral sites. Two extra-framework K^+ ion positions, each coordinated to five framework O atoms and one water molecule, were also found. The solid state ^(29)Si, ^(11)B and ^1H NMR results are fully consistent with this ordered structure

    Quantum tunneling through planar p-n junctions in HgTe quantum wells

    Full text link
    We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band-structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction. The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong Rashba spin-orbit interaction.Comment: 4 pages, 4 figure
    • …
    corecore