61,108 research outputs found
On the Triality Theory for a Quartic Polynomial Optimization Problem
This paper presents a detailed proof of the triality theorem for a class of
fourth-order polynomial optimization problems. The method is based on linear
algebra but it solves an open problem on the double-min duality left in 2003.
Results show that the triality theory holds strongly in a tri-duality form if
the primal problem and its canonical dual have the same dimension; otherwise,
both the canonical min-max duality and the double-max duality still hold
strongly, but the double-min duality holds weakly in a symmetrical form. Four
numerical examples are presented to illustrate that this theory can be used to
identify not only the global minimum, but also the largest local minimum and
local maximum.Comment: 16 pages, 1 figure; J. Industrial and Management Optimization, 2011.
arXiv admin note: substantial text overlap with arXiv:1104.297
Generic dark matter signature for gamma-ray telescopes
We describe a characteristic signature of dark matter (DM) annihilation or
decay into gamma-rays. We show that if the total angular momentum of the
initial DM particle(s) vanishes, and helicity suppression operates to prevent
annihilation/decay into light fermion pairs, then the amplitude for the
dominant 3-body final state f^+f^-\gamma has a unique form dictated by gauge
invariance. This amplitude and the corresponding energy spectra hold for
annihilation of DM Majorana fermions or self-conjugate scalars, and for decay
of DM scalars, thus encompassing a variety of possibilities. Within this
scenario, we analyze Fermi LAT, PAMELA and HESS data, and predict a hint in
future Fermi gamma-ray data that portends a striking signal at atmospheric
Cherenkov telescopes (ACTs).Comment: 9 pages, 4 figures. Version to appear in PR
Pressure Dependence of Wall Relaxation in Polarized He Gaseous Cells
We have observed a linear pressure dependence of longitudinal relaxation time
() at 4.2 K and 295 K in gaseous He cells made of either bare pyrex
glass or Cs/Rb-coated pyrex due to paramagnetic sites in the cell wall. The
paramagnetic wall relaxation is previously thought to be independent of He
pressure. We develop a model to interpret the observed wall relaxation by
taking into account the diffusion process, and our model gives a good
description of the data
The inhabited environment, infrastructure development and advanced urbanization in China's Yangtze River Delta Region
This paper analyzes the relationship among the inhabited environment, infrastructure development and environmental impacts in China's heavily urbanized Yangtze River Delta region. Using primary human environment data for the period 2006-2014, we examine factors affecting the inhabited environment and infrastructure development: urban population, GDP, built-up area, energy consumption, waste emission, transportation, real estate and urban greenery. Then we empirically investigate the impact of advanced urbanization with consideration of cities' differences. Results from this study show that the growth rate of the inhabited environment and infrastructure development is strongly influenced by regional development structure, functional orientations, traffic network and urban size and form. The effect of advanced urbanization is more significant in large and mid-size cities than huge and mega cities. Energy consumption, waste emission and real estate in large and mid-size cities developed at an unprecedented rate with the rapid increase of economy. However, urban development of huge and mega cities gradually tended to be saturated. The transition development in these cities improved the inhabited environment and ecological protection instead of the urban construction simply. To maintain a sustainable advanced urbanization process, policy implications included urban sprawl control polices, ecological development mechanisms and reforming the economic structure for huge and mega cities, and construct major cross-regional infrastructure, enhance the carrying capacity and improvement of energy efficiency and structure for large and mid-size cities
Robust H∞ feedback control for uncertain stochastic delayed genetic regulatory networks with additive and multiplicative noise
The official published version can found at the link below.Noises are ubiquitous in genetic regulatory networks (GRNs). Gene regulation is inherently a stochastic process because of intrinsic and extrinsic noises that cause kinetic parameter variations and basal rate disturbance. Time delays are usually inevitable due to different biochemical reactions in such GRNs. In this paper, a delayed stochastic model with additive and multiplicative noises is utilized to describe stochastic GRNs. A feedback gene controller design scheme is proposed to guarantee that the GRN is mean-square asymptotically stable with noise attenuation, where the structure of the controllers can be specified according to engineering requirements. By applying control theory and mathematical tools, the analytical solution to the control design problem is given, which helps to provide some insight into synthetic biology and systems biology. The control scheme is employed in a three-gene network to illustrate the applicability and usefulness of the design.This work was funded by Royal Society of the U.K.; Foundation for the Author of National Excellent Doctoral Dissertation of China. Grant Number: 2007E4; Heilongjiang Outstanding Youth Science Fund of China. Grant Number: JC200809; Fok Ying Tung Education Foundation. Grant Number: 111064; International Science and Technology Cooperation Project of China. Grant Number: 2009DFA32050; University of Science and Technology of China Graduate Innovative Foundation
Thermal and non-thermal emission in the Cygnus X region
Radio continuum observations detect non-thermal synchrotron and thermal
bremsstrahlung radiation. Separation of the two different emission components
is crucial to study the properties of diffuse interstellar medium. The Cygnus X
region is one of the most complex areas in the radio sky which contains a
number of massive stars and HII regions on the diffuse thermal and non-thermal
background. More supernova remnants are expected to be discovered. We aim to
develop a method which can properly separate the non-thermal and thermal radio
continuum emission and apply it to the Cygnus X region. The result can be used
to study the properties of different emission components and search for new
supernova remnants in the complex. Multi-frequency radio continuum data from
large-scale surveys are used to develop a new component separation method.
Spectral analysis is done pixel by pixel for the non-thermal synchrotron
emission with a realistic spectral index distribution and a fixed spectral
index of beta = -2.1 for the thermal bremsstrahlung emission. With the new
method, we separate the non-thermal and thermal components of the Cygnus X
region at an angular resolution of 9.5arcmin. The thermal emission component is
found to comprise 75% of the total continuum emission at 6cm. Thermal diffuse
emission, rather than the discrete HII regions, is found to be the major
contributor to the entire thermal budget. A smooth non-thermal emission
background of 100 mK Tb is found. We successfully make the large-extent known
supernova remnants and the HII regions embedded in the complex standing out,
but no new large SNRs brighter than Sigma_1GHz = 3.7 x 10^-21 W m^-2 Hz^-1
sr^-1 are found.Comment: 9 pages, 5 figures, accepted by A&A. The quality of the figures is
reduced due to file size limit of the websit
Neutron skin uncertainties of Skyrme energy density functionals
Background: Neutron-skin thickness is an excellent indicator of isovector
properties of atomic nuclei. As such, it correlates strongly with observables
in finite nuclei that depend on neutron-to-proton imbalance and the nuclear
symmetry energy that characterizes the equation of state of neutron-rich
matter. A rich worldwide experimental program involving studies with rare
isotopes, parity violating electron scattering, and astronomical observations
is devoted to pinning down the isovector sector of nuclear models. Purpose: We
assess the theoretical systematic and statistical uncertainties of neutron-skin
thickness and relate them to the equation of state of nuclear matter, and in
particular to nuclear symmetry energy parameters. Methods: We use the nuclear
superfluid Density Functional Theory with several Skyrme energy density
functionals and density dependent pairing. To evaluate statistical errors and
their budget, we employ the statistical covariance technique. Results: We find
that the errors on neutron skin increase with neutron excess. Statistical
errors due to uncertain coupling constants of the density functional are found
to be larger than systematic errors, the latter not exceeding 0.06 fm in most
neutron-rich nuclei across the nuclear landscape. The single major source of
uncertainty is the poorly determined slope L of the symmetry energy that
parametrizes its density dependence. Conclusions: To provide essential
constraints on the symmetry energy of the nuclear energy density functional,
next-generation measurements of neutron skins are required to deliver precision
better than 0.06 fm.Comment: 5 pages, 4 figure
- …