15,510 research outputs found

    Wave propagation in stepped and joined shells Annual report, 1 Sep. 1968 - 1 Sep. 1969

    Get PDF
    Shell impact response and wave propagation in cylindrical and conical shells by experimental and analytical method

    Fluctuations of Entropy Production in Partially Masked Electric Circuits: Theoretical Analysis

    Full text link
    In this work we perform theoretical analysis about a coupled RC circuit with constant driven currents. Starting from stochastic differential equations, where voltages are subject to thermal noises, we derive time-correlation functions, steady-state distributions and transition probabilities of the system. The validity of the fluctuation theorem (FT) is examined for scenarios with complete and incomplete descriptions.Comment: 4 pages, 1 figur

    Exact Master Equation and Quantum Decoherence of Two Coupled Harmonic Oscillators in a General Environment

    Get PDF
    In this paper we derive an exact master equation for two coupled quantum harmonic oscillators interacting via bilinear coupling with a common environment at arbitrary temperature made up of many harmonic oscillators with a general spectral density function. We first show a simple derivation based on the observation that the two-harmonic oscillator model can be effectively mapped into that of a single harmonic oscillator in a general environment plus a free harmonic oscillator. Since the exact one harmonic oscillator master equation is available [Hu, Paz and Zhang, Phys. Rev. D \textbf{45}, 2843 (1992)], the exact master equation with all its coefficients for this two harmonic oscillator model can be easily deduced from the known results of the single harmonic oscillator case. In the second part we give an influence functional treatment of this model and provide explicit expressions for the evolutionary operator of the reduced density matrix which are useful for the study of decoherence and disentanglement issues. We show three applications of this master equation: on the decoherence and disentanglement of two harmonic oscillators due to their interaction with a common environment under Markovian approximation, and a derivation of the uncertainty principle at finite temperature for a composite object, modeled by two interacting harmonic oscillators. The exact master equation for two, and its generalization to NN, harmonic oscillators interacting with a general environment are expected to be useful for the analysis of quantum coherence, entanglement, fluctuations and dissipation of mesoscopic objects towards the construction of a theoretical framework for macroscopic quantum phenomena.Comment: 35 pages, revtex, no figures, 2nd version, references added, to appear in PR

    Quantum teleportation between moving detectors in a quantum field

    Full text link
    We consider the quantum teleportation of continuous variables modeled by Unruh-DeWitt detectors coupled to a common quantum field initially in the Minkowski vacuum. An unknown coherent state of an Unruh-DeWitt detector is teleported from one inertial agent (Alice) to an almost uniformly accelerated agent (Rob, for relativistic motion), using a detector pair initially entangled and shared by these two agents. The averaged physical fidelity of quantum teleportation, which is independent of the observer's frame, always drops below the best fidelity value from classical teleportation before the detector pair becomes disentangled with the measure of entanglement evaluated around the future lightcone of the joint measurement event by Alice. The distortion of the quantum state of the entangled detector pair from the initial state can suppress the fidelity significantly even when the detectors are still strongly entangled around the lightcone. We point out that the dynamics of entanglement of the detector pair observed in Minkowski frame or in quasi-Rindler frame are not directly related to the physical fidelity of quantum teleportation in our setup. These results are useful as a guide to making judicious choices of states and parameter ranges and estimation of the efficiency of quantum teleportation in relativistic quantum systems under environmental influences.Comment: 18 pages, 7 figure

    Control of decoherence in the generation of photon pairs from atomic ensembles

    Full text link
    We report an investigation to establish the physical mechanisms responsible for decoherence in the generation of photon pairs from atomic ensembles, via the protocol of Duan et. al for long distance quantum communication [Nature (London) 414, 413 (2001)] and present the experimental techniques necessary to properly control the process. We develop a theory to model in detail the decoherence process in experiments with magneto-optical traps. The inhomogeneous broadening of the ground state by the trap magnetic field is identified as the principal mechanism for decoherence. In conjunction with our theoretical analysis, we report a series of measurements to characterize and control the coherence time in our experimental setup. We use copropagating stimulated Raman spectroscopy to access directly the ground state energy distribution of the ensemble. These spectroscopic measurements allow us to switch off the trap magnetic field in a controlled way, optimizing the repetition rate for single-photon measurements. With the magnetic field off, we then measure nonclassical correlations for pairs of photons generated by the ensemble as a function of the storage time of the single collective atomic excitation. We report coherence times longer than 10 microseconds, corresponding to an increase of two orders of magnitude compared to previous results in cold ensembles. The coherence time is now two orders of magnitude longer than the duration of the excitation pulses. The comparison between these experimental results and the theory shows good agreement. Finally, we employ our theory to devise ways to improve the experiment by optical pumping to specific initial states.Comment: 16 pages, 11 figures, submitted for publicatio

    Nonmagnetic impurity perturbation to the quasi-two-dimensional quantum helimagnet LiCu2O2

    Full text link
    A complete phase diagram of Zn substituted quantum quasi-two-dimensional helimagnet LiCu2O2 has been presented. Helical ordering transition temperature (T_h) of the original LiCu2O2 follows finite size scaling for less than ~ 5.5% Zn substitution, which implies the existence of finite helimagnetic domains with domain boundaries formed with nearly isolated spins. Higher Zn substitution > 5.5% quenches the long-range helical ordering and introduces an intriguing Zn level dependent magnetic phase transition with slight thermal hysteresis and a universal quadratic field dependence for T_c (Zn > 0.055,H). The magnetic coupling constants of nearest-neighbor (nn) J1 and next-nearest-neighbor (nnn) J2 (alpha=J2/J1) are extracted from high temperature series expansion (HTSE) fitting and N=16 finite chain exact diagonalization simulation. We have also provided evidence of direct correlation between long-range helical spin ordering and the magnitude of electric polarization in this spin driven multiferroic material

    Towards experimental entanglement connection with atomic ensembles in the single excitation regime

    Get PDF
    We present a protocol for performing entanglement connection between pairs of atomic ensembles in the single excitation regime. Two pairs are prepared in an asynchronous fashion and then connected via a Bell measurement. The resulting state of the two remaining ensembles is mapped to photonic modes and a reduced density matrix is then reconstructed. Our observations confirm for the first time the creation of coherence between atomic systems that never interacted, a first step towards entanglement connection, a critical requirement for quantum networking and long distance quantum communications
    corecore