40,933 research outputs found
Application of large eddy interaction model to channel flow
A procedure utilizing an expansion of proper orthogonal functions (or modes) to predict a fully developed flow in channel is derived. To examine numerical and conceptual difficulties, preliminary computations are performed with assigned mean velocity, and turbulence is expressed with only the first mode. The nonlinear interactions of the components of the first mode are treated specifically, with the influence of higher modes neglected; this treatment required adjustment of the skewness and effective Reynolds number to assure energy equilibrium of the first mode. Computational results show that the first mode possesses the structural character similar to that of the entire flow
Visualizing urban microclimate and quantifying its impact on building energy use in San Francisco
Weather data at nearby airports are usually used in building energy simulation to estimate energy use in buildings or evaluate building design or retrofit options. However, due to urbanization and geography characteristics, local weather conditions can differ significantly from those at airports. This study presents the visualization of 10-year hourly weather data measured at 27 sites in San Francisco, aiming to provide insights into the urban microclimate and urban heat island effect in San Francisco and how they evolve during the recent decade. The 10-year weather data are used in building energy simulations to investigate its influence on energy use and electrical peak demand, which informs the city's policy making on building energy efficiency and resilience. The visualization feature is implemented in CityBES, an open web-based data and computing platform for urban building energy research
Spectral Representation Theory for Dielectric Behavior of Nonspherical Cell Suspensions
Recent experiments revealed that the dielectric dispersion spectrum of
fission yeast cells in a suspension was mainly composed of two sub-dispersions.
The low-frequency sub-dispersion depended on the cell length, while the
high-frequency one was independent of it. The cell shape effect was simulated
by an ellipsoidal cell model but the comparison between theory and experiment
was far from being satisfactory. Prompted by the discrepancy, we proposed the
use of spectral representation to analyze more realistic cell models. We
adopted a shell-spheroidal model to analyze the effects of the cell membrane.
It is found that the dielectric property of the cell membrane has only a minor
effect on the dispersion magnitude ratio and the characteristic frequency
ratio. We further included the effect of rotation of dipole induced by an
external electric field, and solved the dipole-rotation spheroidal model in the
spectral representation. Good agreement between theory and experiment has been
obtained.Comment: 19 pages, 5 eps figure
Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 7Li+208Pb System at Near-Coulomb-Barrier Energies using the Folding Potential
Simultaneous analyses previously made for elastic scattering and
fusion cross section data for the Li+Pb system is extended to the
Li+Pb system at near-Coulomb-barrier energies based on the
extended optical model approach, in which the polarization potential is
decomposed into direct reaction (DR) and fusion parts. Use is made of the
double folding potential as a bare potential. It is found that the experimental
elastic scattering and fusion data are well reproduced without introducing any
normalization factor for the double folding potential and that both the DR and
fusion parts of the polarization potential determined from the
analyses satisfy separately the dispersion relation. Further, we find that the
real part of the fusion portion of the polarization potential is attractive
while that of the DR part is repulsive except at energies far below the Coulomb
barrier energy. A comparison is made of the present results with those obtained
from the Continuum Discretized Coupled Channel (CDCC) calculations and a
previous study based on the conventional optical model with a double folding
potential. We also compare the present results for the Li+Pb system
with the analysis previously made for the Li+Pb system.Comment: 7 figures, submitted to PR
Dielectric Behavior of Nonspherical Cell Suspensions
Recent experiments revealed that the dielectric dispersion spectrum of
fission yeast cells in a suspension was mainly composed of two sub-dispersions.
The low-frequency sub-dispersion depended on the cell length, whereas the
high-frequency one was independent of it. The cell shape effect was
qualitatively simulated by an ellipsoidal cell model. However, the comparison
between theory and experiment was far from being satisfactory. In an attempt to
close up the gap between theory and experiment, we considered the more
realistic cells of spherocylinders, i.e., circular cylinders with two
hemispherical caps at both ends. We have formulated a Green function formalism
for calculating the spectral representation of cells of finite length. The
Green function can be reduced because of the azimuthal symmetry of the cell.
This simplification enables us to calculate the dispersion spectrum and hence
access the effect of cell structure on the dielectric behavior of cell
suspensions.Comment: Preliminary results have been reported in the 2001 March Meeting of
the American Physical Society. Accepted for publications in J. Phys.:
Condens. Matte
Building stock dynamics and its impacts on materials and energy demand in China
China hosts a large amount of building stocks, which is nearly 50 billion square meters. Moreover, annual new construction is growing fast, representing half of the world's total. The trend is expected to continue through the year 2050. Impressive demand for new residential and commercial construction, relative shorter average building lifetime, and higher material intensities have driven massive domestic production of energy intensive building materials such as cement and steel. This paper developed a bottom-up building stock turnover model to project the growths, retrofits and retirements of China's residential and commercial building floor space from 2010 to 2050. It also applied typical material intensities and energy intensities to estimate building materials demand and energy consumed to produce these building materials. By conducting scenario analyses of building lifetime, it identified significant potentials of building materials and energy demand conservation. This study underscored the importance of addressing building material efficiency, improving building lifetime and quality, and promoting compact urban development to reduce energy and environment consequences in China
Variation of the first Hilbert coefficients of parameters with a common integral closure
A problem posed by Wolmer V. Vasconcelos on the variation of the first
Hilbert coefficients of parameter ideals with a common integral closure in a
local ring is studied. Affirmative answers are given and counterexamples are
explored as well
- …