120,641 research outputs found

    Secure Communication for Spatially Sparse Millimeter-Wave Massive MIMO Channels via Hybrid Precoding

    Get PDF
    In this paper, we investigate secure communication over sparse millimeter-wave (mm-Wave) massive multiple-input multiple-output (MIMO) channels by exploiting the spatial sparsity of legitimate user's channel. We propose a secure communication scheme in which information data is precoded onto dominant angle components of the sparse channel through a limited number of radio-frequency (RF) chains, while artificial noise (AN) is broadcast over the remaining nondominant angles interfering only with the eavesdropper with a high probability. It is shown that the channel sparsity plays a fundamental role analogous to secret keys in achieving secure communication. Hence, by defining two statistical measures of the channel sparsity, we analytically characterize its impact on secrecy rate. In particular, a substantial improvement on secrecy rate can be obtained by the proposed scheme due to the uncertainty, i.e., 'entropy', introduced by the channel sparsity which is unknown to the eavesdropper. It is revealed that sparsity in the power domain can always contribute to the secrecy rate. In contrast, in the angle domain, there exists an optimal level of sparsity that maximizes the secrecy rate. The effectiveness of the proposed scheme and derived results are verified by numerical simulations

    Choosing new ways to chew

    Get PDF
    No abstract availabl

    Intense terahertz laser fields on a two-dimensional electron gas with Rashba spin-orbit coupling

    Full text link
    The spin-dependent density of states and the density of spin polarization of an InAs-based two-dimensional electron gas with the Rashba spin-orbit coupling under an intense terahertz laser field are investigated by utilizing the Floquet states to solve the time-dependent Schr\"odinger equation. It is found that both densities are strongly affected by the terahertz laser field. Especially a terahertz magnetic moment perpendicular to the external terahertz laser field in the electron gas is induced. This effect can be used to convert terahertz electric signals into terahertz magnetic ones efficiently.Comment: 3 pages, 3 figures, a typo in Fig. 3(b) is correcte

    Binding energies of hydrogen-like impurities in a semiconductor in intense terahertz laser fields

    Full text link
    A detailed theoretical study is presented for the influence of linearly polarised intense terahertz (THz) laser radiation on energy states of hydrogen-like impurities in semiconductors. The dependence of the binding energy for 1s and 2p states on intensity and frequency of the THz radiation has been examined.Comment: 14 pages, 4 figure

    Dual time scales in simulated annealing of a two-dimensional Ising spin glass

    Full text link
    We apply a generalized Kibble-Zurek out-of-equilibrium scaling ansatz to simulated annealing when approaching the spin-glass transition at temperature T=0T=0 of the two-dimensional Ising model with random J=Β±1J= \pm 1 couplings. Analyzing the spin-glass order parameter and the excess energy as functions of the system size and the annealing velocity in Monte Carlo simulations with Metropolis dynamics, we find scaling where the energy relaxes slower than the spin-glass order parameter, i.e., there are two different dynamic exponents. The values of the exponents relating the relaxation time scales to the system length, Ο„βˆΌLz\tau \sim L^z, are z=8.28Β±0.03z=8.28 \pm 0.03 for the relaxation of the order parameter and z=10.31Β±0.04z=10.31 \pm 0.04 for the energy relaxation. We argue that the behavior with dual time scales arises as a consequence of the entropy-driven ordering mechanism within droplet theory. We point out that the dynamic exponents found here for Tβ†’0T \to 0 simulated annealing are different from the temperature-dependent equilibrium dynamic exponent zeq(T)z_{\rm eq}(T), for which previous studies have found a divergent behavior; zeq(Tβ†’0)β†’βˆžz_{\rm eq}(T\to 0) \to \infty. Thus, our study shows that, within Metropolis dynamics, it is easier to relax the system to one of its degenerate ground states than to migrate at low temperatures between regions of the configuration space surrounding different ground states. In a more general context of optimization, our study provides an example of robust dense-region solutions for which the excess energy (the conventional cost function) may not be the best measure of success.Comment: 13 pages, 16 figure
    • …
    corecore