37,985 research outputs found
Magnetic Excitations of Stripes and Checkerboards in the Cuprates
We discuss the magnetic excitations of well-ordered stripe and checkerboard
phases, including the high energy magnetic excitations of recent interest and
possible connections to the "resonance peak" in cuprate superconductors. Using
a suitably parametrized Heisenberg model and spin wave theory, we study a
variety of magnetically ordered configurations, including vertical and diagonal
site- and bond-centered stripes and simple checkerboards. We calculate the
expected neutron scattering intensities as a function of energy and momentum.
At zero frequency, the satellite peaks of even square-wave stripes are
suppressed by as much as a factor of 34 below the intensity of the main
incommensurate peaks. We further find that at low energy, spin wave cones may
not always be resolvable experimentally. Rather, the intensity as a function of
position around the cone depends strongly on the coupling across the stripe
domain walls. At intermediate energy, we find a saddlepoint at for
a range of couplings, and discuss its possible connection to the "resonance
peak" observed in neutron scattering experiments on cuprate superconductors. At
high energy, various structures are possible as a function of coupling strength
and configuration, including a high energy square-shaped continuum originally
attributed to the quantum excitations of spin ladders. On the other hand, we
find that simple checkerboard patterns are inconsistent with experimental
results from neutron scattering.Comment: 11 pages, 13 figures, for high-res figs, see
http://physics.bu.edu/~yaodx/spinwave2/spinw2.htm
Magnetic Excitations of Stripes Near a Quantum Critical Point
We calculate the dynamical spin structure factor of spin waves for weakly
coupled stripes. At low energy, the spin wave cone intensity is strongly peaked
on the inner branches. As energy is increased, there is a saddlepoint followed
by a square-shaped continuum rotated 45 degree from the low energy peaks. This
is reminiscent of recent high energy neutron scattering data on the cuprates.
The similarity at high energy between this semiclassical treatment and quantum
fluctuations in spin ladders may be attributed to the proximity of a quantum
critical point with a small critical exponent .Comment: 4+ pages, 5 figures, published versio
Twisted quantum affine algebras and solutions to the Yang-Baxter equation
We construct spectral parameter dependent R-matrices for the quantized
enveloping algebras of twisted affine Lie algebras. These give new solutions to
the spectral parameter dependent quantum Yang-Baxter equation.Comment: Latex 24 pages. Misprints in eqs.(4.26) and (A.11) are corrected,
cosmetic changes from "affine Kac-Moody algebras" to "affine Lie algebras"
are made throughout the paper following a suggestion by M.B. Halpern, and one
reference is adde
Two novel nonlinear companding schemes with iterative receiver to reduce PAPR in multi-carrier modulation systems
Companding transform is an efficient and simple method to reduce the Peak-to-Average Power Ratio (PAPR) for Multi-Carrier Modulation (MCM) systems. But if the MCM signal is only simply operated by inverse companding transform at the receiver, the resultant spectrum may exhibit severe in-band and out-of-band radiation of the distortion components, and considerable peak regrowth by excessive channel noises etc. In order to prevent these problems from occurring, in this paper, two novel nonlinear companding schemes with a iterative receiver are proposed to reduce the PAPR. By transforming the amplitude or power of the original MCM signals into uniform distributed signals, the novel schemes can effectively reduce PAPR for different modulation formats and sub-carrier sizes. Despite moderate complexity increasing at the receiver, but it is especially suitable to be combined with iterative channel estimation. Computer simulation results show that the proposed schemes can offer good system performances without any bandwidth expansion
Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides
published_or_final_versio
A New Experiment to Study Hyperon CP Violation and the Charmonium System
Fermilab operates the world's most intense antiproton source, now exclusively
dedicated to serving the needs of the Tevatron Collider. The anticipated 2009
shutdown of the Tevatron presents the opportunity for a world-leading low- and
medium-energy antiproton program. We summarize the status of the Fermilab
antiproton facility and review physics topics for which a future experiment
could make the world's best measurements.Comment: 16 pages, 3 figures, to appear in Proceedings of CTP symposium on
Supersymmetry at LHC: Theoretical and Experimental Perspectives, The British
University in Egypt, Cairo, Egypt, 11-14 March 200
Solutions of the Yang-Baxter Equation with Extra Non-Additive Parameters II: }
The type-I quantum superalgebras are known to admit non-trivial one-parameter
families of inequivalent finite dimensional irreps, even for generic . We
apply the recently developed technique to construct new solutions to the
quantum Yang-Baxter equation associated with the one-parameter family of irreps
of , thus obtaining R-matrices which depend not only on a
spectral parameter but in addition on further continuous parameters. These
extra parameters enter the Yang-Baxter equation in a similar way to the
spectral parameter but in a non-additive form.Comment: 10 pages, LaTex file (some errors in the Casimirs corrected
Infinite Families of Gauge-Equivalent -Matrices and Gradations of Quantized Affine Algebras
Associated with the fundamental representation of a quantum algebra such as
or , there exist infinitely many gauge-equivalent
-matrices with different spectral-parameter dependences. It is shown how
these can be obtained by examining the infinitely many possible gradations of
the corresponding quantum affine algebras, such as and
, and explicit formulae are obtained for those two cases.
Spectral-dependent similarity (gauge) transformations relate the -matrices
in different gradations. Nevertheless, the choice of gradation can be
physically significant, as is illustrated in the case of quantum affine Toda
field theories.Comment: 14 pages, Latex, UQMATH-93-10 (final version for publication
Universal Scaling of the Neel Temperature of Near-Quantum-Critical Quasi-Two-Dimensional Heisenberg Antiferromagnets
We use a quantum Monte Carlo method to calculate the Neel temperature T_N of
weakly coupled S=1/2 Heisenberg antiferromagnetic layers consisting of coupled
ladders. This system can be tuned to different two-dimensional scaling regimes
for T > T_N. In a single-layer mean-field theory,
\chi_s^{2D}(T_N)=(z_2J')^{-1}, where \chi_s^{2D} is the exact staggered
susceptibility of an isolated layer, J' the inter-layer coupling, and z_2=2 the
layer coordination number. With a renormalized z_2, we find that this
relationship applies not only in the renormalized-classical regime, as shown
previously, but also in the quantum-critical regime and part of the
quantum-disordered regime. The renormalization is nearly constant; k_2 ~
0.65-0.70. We also study other universal scaling functions.Comment: 4 pages, 4 figure
Fos co-operation with PTEN loss elicits keratoacanthoma not carcinoma due to p53/p21<sup>WAF</sup>-induced differentiation triggered by GSK3b inactivation and reduced AKT activity
To investigate gene synergism in multistage skin carcinogenesis, the RU486-inducible cre/lox system was employed to ablate PTEN function [K14.cre/D5PTENflx] in mouse epidermis expressing activated v-fos [HK1.fos]. RU486-treated HK1.fos/D5PTENflx mice exhibited hyperplasia, hyperkeratosis and tumours that progressed to highly differentiated keratoacanthomas rather than carcinomas, due to re-expression of high p53 and p21WAF levels. Despite elevated MAP kinase activity, cyclin D1/E2 over expression and increased AKT activity forming areas of highly proliferative, papillomatous keratinocytes, increasing levels of GSK3b inactivation exceeded a threshold that induced p53/p21WAF expression to halt proliferation and accelerate differentiation, giving the hallmark keratosis of keratoacanthomas. A pivotal facet to this GSK3b-triggered mechanism centred on increasing p53 expression in basal layer keratinocytes. This reduced activated AKT expression and released inhibition of p21WAF, which accelerated keratinocyte differentiation, as indicated by unique basal layer expression of differentiation-specific keratin K1, alongside premature filaggrin and loricrin expression. Thus, fos synergism with PTEN loss elicited a benign tumour context where GSK3b-induced, p53/p21WAF expression continually switched AKT-associated proliferation into one of differentiation, preventing further progression. This putative compensatory mechanism required the critical availability of normal p53 and/or p21WAF otherwise deregulated fos, Akt and GSK3b associate with malignant progression
- …
