158,591 research outputs found
Reexamining the "finite-size" effects in isobaric yield ratios using a statistical abrasion-ablation model
The "finite-size" effects in the isobaric yield ratio (IYR), which are shown
in the standard grand-canonical and canonical statistical ensembles (SGC/CSE)
method, is claimed to prevent obtaining the actual values of physical
parameters. The conclusion of SGC/CSE maybe questionable for neutron-rich
nucleus induced reaction. To investigate whether the IYR has "finite-size"
effects, the IYR for the mirror nuclei [IYR(m)] are reexamined using a modified
statistical abrasion-ablation (SAA) model. It is found when the projectile is
not so neutron-rich, the IYR(m) depends on the isospin of projectile, but the
size dependence can not be excluded. In reactions induced by the very
neutron-rich projectiles, contrary results to those of the SGC/CSE models are
obtained, i.e., the dependence of the IYR(m) on the size and the isospin of the
projectile is weakened and disappears both in the SAA and the experimental
results.Comment: 5 pages and 4 figure
NASA Space Geodesy Program: GSFC data analysis, 1992. Crustal Dynamics Project VLBI geodetic results, 1979 - 1991
The Goddard VLBI group reports the results of analyzing 1648 Mark 3 data sets acquired from fixed and mobile observing sites through the end of 1991, and available to the Crustal Dynamics Project. Two large solutions were used to obtain Earth rotation parameters, nutation offsets, radio source positions, site positions, site velocities, and baseline evolution. Site positions are tabulated on a yearly basis for 1979 to 1995, inclusive. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for 200 baselines, and individual length determinations are presented for an additional 356 baselines. This report includes 155 quasar radio sources, 96 fixed stations and mobile sites, and 556 baselines
Estimating statistical distributions using an integral identity
We present an identity for an unbiased estimate of a general statistical
distribution. The identity computes the distribution density from dividing a
histogram sum over a local window by a correction factor from a mean-force
integral, and the mean force can be evaluated as a configuration average. We
show that the optimal window size is roughly the inverse of the local
mean-force fluctuation. The new identity offers a more robust and precise
estimate than a previous one by Adib and Jarzynski [J. Chem. Phys. 122, 014114,
(2005)]. It also allows a straightforward generalization to an arbitrary
ensemble and a joint distribution of multiple variables. Particularly we derive
a mean-force enhanced version of the weighted histogram analysis method (WHAM).
The method can be used to improve distributions computed from molecular
simulations. We illustrate the use in computing a potential energy
distribution, a volume distribution in a constant-pressure ensemble, a radial
distribution function and a joint distribution of amino acid backbone dihedral
angles.Comment: 45 pages, 7 figures, simplified derivation, a more general mean-force
formula, add discussions to the window size, add extensions to WHAM, and 2d
distribution
Influence of statistical sequential decay on isoscaling and symmetry energy coefficient in a GEMINI simulation
Extensive calculations on isoscaling behavior with the sequential-decay model
gemini are performed for the medium-to-heavy nuclei in the mass range A =
60-120 at excitation energies up to 3 MeV/nucleon. The comparison between the
products after the first-step decay and the ones after the entire-steps decay
demonstrates that there exists a strong sequential decay effect on the final
isoscaling parameters and the apparent temperature. Results show that the
apparent symmetry energy coefficient does not reflect the
initial symmetry energy coefficient embedded in the mass calculation
in the present GEMINI model.Comment: 4 pages, 3 figures, 1 tabl
Isoscaling in the Lattice Gas Model
The isoscaling behavior is investigated using the isotopic/isobaric yields
from the equilibrated thermal source which is prepared by the lattice gas model
for lighter systems with A = 36. The isoscaling parameters and
- are observed to drop with temperature. The difference of neutron and
proton chemical potential shows a turning point around 5 MeV where the liquid
gas phase transition occurs in the model. The relative free neutron or proton
density shows a nearly linear relation with the N/Z (neutron to proton ratio)
of system and the isospin fractionation is observed.Comment: 5 figures, 5 pages; the final version to appear in Phys Rev
- …
