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We present an identity for an unbiased estimate of a general statistical distribution. The identity com-
putes the distribution density from dividing a histogram sum over a local window by a correction
factor from a mean-force integral, and the mean force can be evaluated as a configuration average.
We show that the optimal window size is roughly the inverse of the local mean-force fluctuation. The
new identity offers a more robust and precise estimate than a previous one by Adib and Jarzynski
[J. Chem. Phys. 122, 014114 (2005)]. It also allows a straightforward generalization to an arbitrary
ensemble and a joint distribution of multiple variables. Particularly we derive a mean-force enhanced
version of the weighted histogram analysis method. The method can be used to improve distributions
computed from molecular simulations. We illustrate the use in computing a potential energy distri-
bution, a volume distribution in a constant-pressure ensemble, a radial distribution function, and a
joint distribution of amino acid backbone dihedral angles. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4721638]

I. INTRODUCTION

We present a method for estimating a general statisti-
cal distribution from data collected in a molecular simulation.
The method is based on an identity and is superior to the com-
mon approach of using a normalized histogram, which suffers
from either a large noise when the bin size is too small or a
systematic bias when the bin size is too large.

Our identity is akin to a previous one derived by Adib and
Jarzynski1 (hence the AJ identity), whereby the distribution
density ρ(x) at a point x is estimated from a weighted number
of visits to a window surrounding x, plus a correction from
integrating the derivative of ρ(x). The AJ identity improves
over the histogram-based approach not only by eliminating
the systematic bias from binning but also by smoothing out
the resulting distribution, as the window contains much more
data points than a single bin. However, the identity is slightly
inconvenient as it neither ensures a positive output, nor deter-
mines its optimal parameters.

Here we present a new identity in which we construct
a proper correction factor from integrating the “mean force”
(the logarithmic derivative of the distribution density), and use
it to divide the number of visits to a local window to reach
an unbiased estimate, as schematically illustrated in Fig. 1(a).
The new strategy not only guarantees a nonnegative distri-
bution, but also offers a simple estimate of the optimal win-
dow size, as it separates the error contributions from both the
histogram and the mean force. The new identity also allows
straightforward extensions to an arbitrary ensemble and to a
joint distribution of multiple variables.

We describe the new identity in Sec. II, present a few
numerical applications in Sec. III, and conclude the article in
Sec. IV with a few discussions.

a)Electronic mail: jpma@bcm.tmc.edu.

II. METHODS

A. Integral identity

We wish to find an expression for the distribution density
ρ(x) at x = x*. We first approximate ρ(x*) by a histogram sum
over a local window (x−, x+) enclosing x = x*, and then apply
a correction factor. Formally,

ρ(x∗) =
∫ x+
x−

ρ(x)dx∫ x+
x−

ρ(x)/ρ(x∗)dx
,

where the numerator
∫ x+
x−

ρ(x)dx counts the fraction of x
falling into the window (x−, x+), and can thus be measured
from the histogram sum over the window.

We then express the logarithm of ρ(x)/ρ(x*) on the de-
nominator to an integral of (log ρ)′(y) as

ρ(x)/ρ(x∗) = exp[log ρ(x) − log ρ(x∗)]

= exp

(∫ x

x∗
(log ρ)′(y)dy

)
.

So

ρ(x∗) =
∫ x+
x−

ρ(x)dx∫ x+
x−

exp
(∫ x

x∗ (log ρ)′(y)dy
)
dx

. (1)

We refer to Eq. (1) as the fractional identity in the fol-
lowing. Unlike in the AJ identity,1 the correction here is ap-
plied as a divisor instead of additively. Nevertheless, it can be
derived as a near-optimal modification of the AJ identity as
shown in Appendix A.

B. Mean force from configuration average

The identity Eq. (1) requires a mean force (log ρ)′(x) in
addition to a histogram. In the following, we show how to
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FIG. 1. (a) The key of the fractional identity is to convert the ratio of a his-
togram sum (shaded area) to the distribution density ρ(x*) to an integral of the
mean force (log ρ)′(x). We then measure the mean force and use its integral
to divide the observed histogram sum to obtain an unbiased estimate of ρ(x*).
As both the histogram sum and ratio involves data from a window instead of
a single bin, the resulting distribution is smoother due to the reduced uncer-
tainty. (b) The auxiliary function φ(x) (solid) and its derivative φ′(x) (dashed,
δ-function at x = x* excluded) employed by the Adib-Jarzynski identity (Ap-
pendix A).

construct a conjugate force fx = fx(rN, s), as a function of
molecular coordinates rN and other ensemble variables s, such
that its ensemble average is equal to the required mean force
(log ρ)′(x). Thus, in a molecular simulation, we can compute
fx for each trajectory frame and use its average as the mean
force. The expressions for the mean force are summarized in
Eq. (5) and Eqs. (4) or (4′).

We first express x as a function x = X(rN, s) of both
molecular coordinates rN and (optionally) some variables s
of the simulation ensemble, e.g., s can be the volume in
an isobaric ensemble, or the temperature in a tempering
simulation.2, 3 Note that X(rN, s) denotes a function of rN and
s, while x its value as a number.

The distribution density ρ(x) can now be written as

ρ(x) =
∫

δ(X(rN, s) − x)w(rN, s)drNds, (2)

where δ(· · ·) is the Dirac δ-function, and w(rN, s) is the
weight for a configuration rN and parameters s, e.g.,
w(rN, s) ∝ exp[−βU (rN )] in a canonical ensemble [with
U(rN) being the potential energy and β the temperature].

Equation (2) is properly normalized, since∫
ρ(x)dx =

∫ (∫
δ(X(rN, s) − x)dx

)
w(rN, s)drNds

=
∫

w(rN, s)drNds = 1.

Similarly, the average 〈A(rN, s)〉x at x for any quantity A(rN,
s) can be defined as

〈A(rN, s)〉x =
∫

A(rN, s)δ(X(rN, s) − x)w(rN, s)drNds∫
δ(X(rN, s) − x)w(rN, s)drNds

,

(3)
where we have again used the δ-function to collect configu-
rations with X(rN, s) being x, and the denominator is equal to
ρ(x). Our objective is to find an expression fx(rN, s) such that
〈fx(rN, s)〉x = (log ρ)′(x) = ρ ′(x)/ρ(x).

We now evaluate the derivative of ρ(x) as

ρ ′(x) =
∫

− ∂

∂X
δ(X(rN, s) − x)w(rN, s)drNds,

where we have used ∂δ(X − x)/∂x = −∂δ(X − x)/∂X.
We proceed by introducing a vector field v(rN, s) such

that v · ∇X = 1, e.g.,

v(rN, s) = ∇X(rN, s)

∇X(rN, s) · ∇X(rN, s)
. (4)

More generally, it can be constructed from an arbitrary vector
field Y (∇X · Y �= 0) as

v(rN, s) = Y(rN, s)

∇X(rN, s) · Y(rN, s)
. (4′)

Note that ∇ is defined on the joint vector space of both rN and
s, so ∇ = (∂/∂rN, ∂/∂s).

We now insert 1 = v · ∇X into the integrand and recall
that δ(X(rN, s) − x) depends on rN and s only through X. So
∇X

[
∂δ(X − x)/∂X

] → ∇δ(X − x), and

ρ ′(x) =
∫

−v(rN, s) · ∇δ(X(rN, s) − x)w(rN, s)drNds

=
∫

δ(X(rN, s) − x)∇ · [v(rN, s)w(rN, s)]drNds

=
∫

δ(X(rN, s) − x)w(rN, s)fx(rN, s)drNds,

where we have integrated by parts to shift the ∇ to the rest of
the integrand, and defined a conjugate force fx ≡ ∇ · v + v ·
∇ log w. The last step follows from

∇ · (vw) = ∇ · vw + v · ∇w = (∇ · v + v · ∇ log w)w = fxw.

Comparing with Eq. (3), we see that the mean force
(log ρ)′(x) = ρ ′(x)/ρ(x) is equal to the average of fx(rN, s)
under a fixed x,

(log ρ)′(x) = 〈
fx(rN, s)

〉
x

= 〈∇ · v(rN, s) + v(rN, s) · ∇ log w(rN, s)
〉
x
. (5)

For a canonical ensemble, the second term v · ∇ log w
is reduced to −βv · ∇U , i.e., the projection of the molecu-
lar force to the gradient of X [assuming Eq. (4)], which is in
accordance with the name “mean force” of 〈fx〉.
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The above derivation is analogous to that of the dynamic
temperature by Rugh.4 In fact the dynamic temperature can
be derived as a special case of Eq. (5). Consider the canoni-
cal ensemble at infinite temperature β → 0. The distribution
of the total energy E = H(rN) (rN now represents a point in
the phase space of coordinates and momenta) is proportional
to the density of states g(E). The mean force ∂log g(E)/∂E

should be the intrinsic temperature β(E). According to
Eq. (5), it equals to 〈∇ · v〉E , with v = ∇H/(∇H · ∇H ), we
thus recover Rugh’s dynamic temperature.

C. Optimal window size

We now determine the two window boundaries x− and
x+ in Eq. (1) such that they minimize the statistical error in
ρ(x*).

We first note that the histogram and mean-force data con-
tribute independently to the numerator and denominator, re-
spectively. How much the two contribute is however con-
trolled by the window size. The output is dominated by the
histogram contribution (numerator) with a narrow window,
but by the mean-force contribution (denominator) with a wide
window. For a narrow window, the denominator is reduced to
the window width, and thus the identity is approximately a
histogram average. At the other extreme, if the window covers
the entire domain of x, the numerator becomes a constant, and
the distribution is determined entirely by the mean-force inte-
gral on the denominator, i.e., ρ(x∗) = exp[

∫ x∗
(log ρ)′(x)dx]

(the lower bound of the integral is to be determined by the
normalization).

As the window size increases, the relative error of the
numerator decreases as more data points reduces uncertainty,
but that of the denominator increases as the error in the mean-
force integral accumulates. The sum reaches a minimum at
the optimal window.

Quantitatively, the relative error of the numerator
ε(N )/N is 1/

√
N , where N = N(x−, x+) is the number of

independent data points included in the window.
The relative error of the denominator D is harder to com-

pute exactly and thus is estimated from an upper bound. First,
since D is an integral of exp (�log ρ), the relative error of
D is no larger than the maximal relative error of exp (�log
ρ), or equivalently the maximal absolute error of �log ρ.
Next, since �log ρ itself is an integral of the mean force,
i.e.,� log ρ(x) = ∫ x

x∗ 〈fx〉(x ′)dx ′, the maximum is likely to
occur at either window boundary x = x±. In the discrete
version, the integral becomes a sum over bins as � log ρ

= ∑
i 〈fx〉(xi)δx withδx being the bin size. Its error [ε(�log

ρ)]2, assuming no correlation among mean force at different
bins, is

∑
i σ

2
f (xi)δx2/δn(xi), where σ 2

f (xi) is the variance of
the conjugate force at xi, and δn(xi) is the number of indepen-
dent data points in the bin at xi.

On reaching the optimal window, including one more bin
from either edge would keep the combined error [ε(N)/N]2

+ [ε(D)/D]2 constant. So

− δn(x±)

N (x−, x+)2
+ σ 2

f (x±)

δn(x±)
δx2 = 0,

where the first term is the decrease of error due to the in-
creased sample size, while the second is the increase due to
the mean-force integration. Thus

δn(x±)

N (x−, x+)
= σf.(x±)δx.

For a relatively narrow window, we have N ≈ δnw/δx,
with w being the window width. If we further replace σ f(x±)
by a local mean σ̄f , then

w = γ /σ̄f , (6)

where γ is a heuristic factor which should ideally be 1.0.
However, as we overestimate the error of the denominator,
Eq. (6) somehow underestimates the optimal window size. In
practice, we found the optimal γ was 1 ∼ 2.

On using Eq. (6), we emphasize that σ f is the mean-force
fluctuation at a fixed x, i.e., σ 2

f (x) = 〈f 2〉x − 〈f 〉2
x , and thus is

evaluated at the bin containing x. However, after the intra-bin
calculation, the quantity can then be averaged over a local or
global window for a more precise σ̄f .

If the mean-force fluctuation is very small, Eq. (6) sug-
gests abandoning the histogram data and switching to a mean-
force integration. On the other hand, if the mean-force has a
very large variance, one should stick to the histogram. Thus
the method is effective only if the mean-force fluctuation is
small. An attempt to reduce the mean-force fluctuation is de-
scribed in Appendix B, where we improve the mean force
itself by using data of the second-order derivatives of the
distribution.

D. Extension to weighted histogram analysis method

We now extend Eq. (1) to a composite distribution, i.e.,
a superposition of several distributions under different con-
ditions, which can result from independent simulations or an
extended ensemble simulation, such as a tempering simula-
tion (simulated2 and parallel3 tempering). For concreteness,
we assume that the individual distributions are canonical ones
ρ(x, β i) at different temperatures β i (with i being its label).

The aim is to estimate the distribution ρ(x, β) at some
β, which needs not to be one of the β i’s. Although the multi-
ple histogram method, also known as the weighted histogram
analysis method (WHAM),5 usually serves as the standard
routine, we shall derive a mean-force-improved version here.

We first generalize Eq. (1) to

ρ(x∗, β) =
∑

i Ni

∫ x+
x−

ρ(x, βi)dx∑
i Ni

∫ x+
x−

ρ(x,βi )
ρ(x∗,β)dx

,

where Ni is the total number of independent data points from
the simulation at the temperature β i, and the sum is carried
over different temperatures β i. To proceed, we simultaneously
multiple and divide ρ(x*, β i) in the denominator,

∑
i
Ni

∫ x+

x−

ρ(x, βi)

ρ(x∗, β)
dx =

∑
i
Ni

ρ(x∗, βi)

ρ(x∗, β)

×
∫ x+

x−

ρ(x, βi)

ρ(x∗, βi)
dx,
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where the x-independent ρ(x∗, βi)/ρ(x∗, β) has been moved out of the integral, leaving ρ(x, βi)/ρ(x∗, βi) to be converted to
the mean force integral at a fixed β i as before,

ρ(x∗, β) =
∑

i Ni

∫ x+
x−

ρ(x, βi)dx∑
i

(
Ni

ρ(x∗,βi )
ρ(x∗,β)

∫ x+
x−

exp[
∫ x

x∗ (log ρ)′(y, βi)dy]dx
) . (7)

For example, in case of the potential energy U distribution in a canonical ensemble, we have w(U, β)
= exp(−βU )/Z(β), with Z(β) being the partition function,

ρ(U ∗, β) =
∑

i Ni

∫ U+
U−

ρ(U, βi)dU∑
i

(
Ni

exp(−βi U∗)/Z(βi )
exp(−β U∗)/Z(β)

∫ U+
U−

exp
[∫ U

U∗ (〈∇ · v〉U ′ − βi) dU ′]dU
) , (8)

where v = ∇U/(∇U · ∇U ). The regular WHAM5 is recov-
ered with an infinitesimal window U− = U+ = U*. Generally,
Eq. (7) improves the histogram method by using the mean
force data, e.g., the dynamic temperature 〈∇ · v〉U ′ here. Note
that since 〈∇ · v〉U ′ is the same under any temperature β i, its
data from different temperatures can be combined.

E. Summary and practical notes

To summarize the method, we first compute a mean force
profile (log ρ)′(x) at any x from Eqs. (4) [or (4′)] and (5) from
a simulation trajectory. It is then plugged into Eq. (1) to com-
pute the distribution density ρ(x*), with the window (x−, x+)
size determined by Eq. (6).

Practically, we shall assume both histogram and mean
force data are collected by bins of size δx. We eval-
uate the double integral

∫ x+
x−

exp(
∫ x

x∗ (log ρ)′(y)dy)dx in

Eq. (1) by first computing v(x, x∗) = ∫ x

x∗ (log ρ)′(y)dy, then∫ x+
x−

exp[v(x, x∗)]dx. The step size for numerical integration
is always the bin size δx. For the inner integral, (log ρ)′ is
computed as the bin-averaged value, and v(x, x∗) at every bin
boundary x as v(x, x∗) ≈ ∑x

xi=x∗ (log ρ)′(xi)δx. The outer in-
tegral is then evaluated by the trapezoidal rule as

∫ x+

x−
f (x)dx ≈

[
f (x−)

2
+ f (x− + δx) + · · ·

+ f (x+ − δx) + f (x+)

2

]
δx,

where f (x) = exp[v(x, x∗)]. Since we usually need ρ(x*)
at many x*, we pre-compute (log ρ)′(y) and then v(x, xO )
= ∫ x

xO
(log ρ)′(y)dy for some xO. In this way, v(x, x∗)

= v(x, xO ) − v(x∗, xO ) can be quickly retrieved in evaluating
ρ(x*) at any x*.

Although the error of (log ρ)′(y) depends on the bin size,
that of the integral v(x, x∗), and hence ρ(x*), does not. To see
this, consider a small bin of width δx and δn data points. If
the standard deviation of (log ρ)′(y) is σ , then the error of the
bin is σ 2/δn. Its contribution to the error of v(x, x∗) should
be multiplied by δx2 and is thus σ 2δx2/δn. If we now split
the bin into two, then each sub-bin has roughly δn/2 points,
each with an error of 2σ 2/δn. But the contribution to the er-

ror of v(x, x∗) from the two new bins, (2σ 2/δ n)(δ x/2)2 × 2
= σ 2δ x2/δ n, remains the same.

Practically, Eq. (5) may fail if a bin is empty. In this case,
we symmetrically enlarge the bin to a window such that it
contains at least one data point, then use Eq. (5).

III. APPLICATIONS

A. Potential energy distribution

We first compute a potential energy distribution
ρ(U) in a canonical ensemble, in which w(rN, β)
= exp[−βU (rN )]/Z(β) with β being the recipro-
cal temperature, and Z(β) being the partition function.
Equations (1) and (5) become

ρ(U ∗) =
∫ U+
U−

ρ(U )dU∫ U+
U−

exp
(∫ U

U∗ (log ρ)′(y)dy
)

dU
,

(log ρ)′(U ) = 〈∇ · v − β〉U

=
〈
∇ ·

( ∇U (rN )

∇U (rN ) · ∇U (rN )

)〉
U

− β.

Since (log ρ)′(U) is the difference between the dynamic
temperature4, 6 〈∇ · v〉 and the simulation temperature β, the
distribution peaks at (log ρ)′(U) = 0 where the two cancel.

We performed a molecular dynamics (MD) simulation
on a 256-particle Lennard-Jones system under a smoothly
switched potential (see Appendix C, rs = 2.0 and rc = 3.0).
The temperature β = 1.0, density ρ = 0.8, and time step �t
= 0.002. Velocity rescaling was used as the thermostat7 with
a time step 0.01.

From a single trajectory of 107 steps, we constructed two
samples. In the test sample, 104 frames (every 1000 steps)
were collected; in the reference one, all frames were used.
The setting avoided possible sampling inaccuracy to affect
the comparison of different methods, as explained in Ap-
pendix D. The bin size for histogram-like data was always
δU = 0.1. Unless specified otherwise, the test sample was
used.

We first demonstrate the use of the fractional identity
Eq. (1) with a fixed symmetric window of size �U = U+
− U− = 12.4, a value determined from Eq. (6) (γ = 1.0). The
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FIG. 2. The potential energy distribution. (a) Comparison of the distributions from the histogram (gray dotted lines), the fractional identity (Eq. (1), blue circles
and dashed line); and the Adib-Jarzynski (AJ) like identity (Eq. (A1), red squares and dot-dashed line). Data from the same test sample were used for all three;
symbols were plotted with a spacing �U = 5.0 to avoid cluttering. The reference curve (black line) was computed from the reference sample (same trajectory,
higher sampling rate). Lines were plotted with a spacing equal to the bin size δU = 0.1. Vertical lines at the right edge were due to negative or small output from
the AJ identity. (b) Error measured from the KS difference as a function of window size �U. (c) Error measured from the entropic distance. (d) The distribution
from the WHAM (gray dotted line) compared with an improved version using the fractional identity (Eq. (8), blue circles, dashed line). The style was similar
to that in panel (a). Vertical dotted lines at the edges were due to empty output from WHAM. (e) Comparison of the distributions from a canonical ensemble
(blue) and a microcanonical one (red).

mean force (log ρ)′(U) was computed from a single bin at
U. As shown in Fig. 2(a), the resulting distribution was much
smoother than the histogram (which was calculated from the
number of visits to each bin). For comparison, we computed
the result from the AJ identity with the same window size.
Though the results were generally similar, the AJ identity
sometimes yielded negative values at the two edges, while the
fractional identity appeared to be more robust and closer to
the reference.

To show the gain from the integral identity ap-
proach, we define a KS difference as �KS = (

√
N

+ 0.11 + 0.12/
√

N )�CDF [which is commonly used in the
Kolmogorov-Smirnov (KS) test for detecting the difference
between two distributions8], where N is the sample size, and
�CDF is the maximal difference between the cumulative dis-
tribution function (CDF) F (x) = ∫ x

−∞ ρ(y) dy of the result-
ing distribution and that from the reference. The smaller the
quantity is, the more accurate the test distribution is. As the
measure is independent of the bin size, it mainly detects
the systematic bias in the test distribution instead of the

smoothness of distribution density. As the identity is not op-
timized for the CDF but for the distribution density, the KS
difference serves as a stringent test.

The KS differences, computed for the histogram, the
fractional identity Eq. (1) and the AJ identity Eq. (A1) are
shown in Fig. 2(b). It is clear that that both identities rendered
more accurate distributions than the histogram. We also show
there was an optimal window size that minimized the error.
However, for the fractional identity, the optimal window size
�U ≈ 20.0 was greater than the value 12.4 given by Eq. (6).
Thus, a factor γ ≈ 1.5 was used in other examples. Recall
the KS difference scales with

√
N , thus from Fig. 2(b) we

estimated about 20-fold increase of efficiency from using the
optimal window. We also notice that with a smaller window,
the fractional identity gave better estimates than the AJ iden-
tity. This was expected as that the fractional identity is the
optimal modification of the AJ identity in this case, as shown
in Appendix A. With a larger window, the errors from both
identities grew rapidly due to the larger involvement of the
mean force data. As the factional identity quickly switched
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to a pure mean-force-based integral with a large window, its
growth was faster. The comparison shows that choosing the
window size is crucial to the success of the integral identity,
and an overly large window can be counterproductive.

We performed a similar comparison in terms
of the entropic distance defined as D(ρ||ρref.)
= ∫ ∞

−∞ log[ρ(y)/ρref.(y)]ρ(y)dy for two distributions ρ(x)
and ρref.(x). For the AJ identity, in case ρ(x) < 0, zero was
assumed. Unlike the KS difference, this quantity directly
compares the distribution densities. As shown in Fig. 2(c),
the fractional identity consistently produced a small en-
tropic distance than the AJ identity, suggesting an improved
smoothness. Interestingly, the error of the entropic distance
also had a minimal, which occurred at a similar location �U
≈ 20.0 to that from the KS difference.

We now demonstrate the mean-force-improved WHAM
introduced in Sec. II D. In this case, we performed additional
simulations at two neighboring temperatures T = 0.8 and T
= 1.2. The reweighted distributions to T = 1.0 from both
the original WHAM and the improved version are shown in
Fig. 2(d), and as expected, the latter was much smoother than
the former.

We emphasize that the identity approach is ensemble-
dependent because the mean force depends on the ensem-
ble weight w. To illustrate the point, we simulated the
same system using a regular molecular dynamics without a
canonical thermostat, i.e., we targeted a microcanonical en-
semble in which the total energy was kept as a constant.
In the ensemble, the weight for a configuration, after av-

eraging out momentum components, is w(rN ) ∝ √
K

Nf −2

=
√

Etot − U (rN )
Nf −2

, where Nf is the number of degrees
of freedom, and K, U, and Etot are the kinetic, potential,
and total energy, respectively. The mean force is accordingly

(log ρ)′(U ) = 〈∇ · v〉U −
1
2 Nf −1

Etot−U
, where Nf = 3N − 6, and

the constant reference temperature β in the canonical en-
semble is changed to an energy-dependent term ( 1

2Nf − 1)/
(Etot − U ).

The microcanonical-ensemble simulation was similar to
the canonical-ensemble one. During equilibration, the kinetic
energy was scaled regularly to match T ≈ 1.0, and was kept
as a constant afterward (Etot = −932). As shown in Fig. 2(e),
the distributions and mean forces (lower inset) from the two
ensembles differed considerably, whereas the dynamic tem-
perature 〈∇ · v〉 (upper inset) matched. This example shows
the importance of applying the correct formula for the mean
force.

B. Volume distribution

In the second example, we compute a volume distribution
ρ(V ) in an isothermal-isobaric (i.e., constant temperature and
pressure) ensemble.9, 10 Unlike the previous case, the volume
V is not a function of system coordinates, but an additional
variable in the ensemble weight w(rN, V ). Particularly, the
volume V serves as a scaling factor that translates the reduced
(0 to 1) coordinates Ri to the actual ones as ri = 3

√
V Ri . In

terms of reduced coordinates, the ensemble weight can be

written as

w({ri}, V )drNdV ∝ exp[−βU ({ 3
√

V Ri}) −βpV ]V NdRNdV,

where β and p are the reciprocal temperature and the pressure,
respectively.

According to Eq. (5), the conjugate force fV is reduced
to ∂ log w/∂V in this case (the vector field v is the unit vec-
tor along the direction of the parameter V, so ∇ · v = 0, v · ∇
= ∂/∂V ). Thus,

ρ(V ∗) =
∫ V+
V−

ρ(V )dV∫ V+
V−

exp
(∫ V

V ∗ (log ρ)′(y)dy
)
dV

(log ρ)′(V ) = N

V
− 〈βr · ∇U 〉V

3V
− βp = β[〈pc(rN )〉V − p]

represents the difference between the averaged virial pres-
sure pc(rN ) ≡ (N + β 〈r · F〉V /3)/V and the simulation
pressure p.

There is however a subtle distinction between the ap-
parent volume distribution ρ(V ) defined above and the ac-
tual physical one ρ̂(V ). The difference arises from the fact
that the partition function Z(β, V ) in the canonical ensem-
ble counts configurations with the volume no larger than,
instead of equal to, the volume V of the simulation box. In
other words, unless there are particle lying precisely at all six
boundary faces of the simulation box, it is always possible
to shrink the box slightly without leaving out any particles.
In this sense, the physical volume of a configuration is usu-
ally less than the volume of the box. It is now appropriate to
introduce a differential partition function Z′10 for all config-
urations with the volume precisely falling in (V − dV, V ) as
Z′ ∝ (∂Z/∂V )dV = 〈pc〉V ZdV , and accordingly the actual
physical volume distribution ρ̂(V ) differs from ρ(V ) by a fac-
tor, i.e., ρ̂(V ) ∝ 〈pc〉V ρ(V ). The reader is referred to Koper
and Reiss10 for a more thorough discussion.

However, the above correct does not strictly apply to a
periodic system, as the test case here. We calculated ρ̂(V ) be-
low only to show the computing process by pretending the
system were non-periodic. A direct sampling according to
physical volume distribution ρ̂(V ) is however inconvenient,
as it requires one to know 〈pc〉V in advance. In the follow-
ing, we shall use ρ(V ) to populate configurations during sim-
ulation, but report the adjusted ρ̂(V ) after applying the post-
simulation correction.

We performed a MD simulation on the 256 Lennard-
Jones system using the switched potential (with rs = 2.5 and
rc = 3.5). The temperature T = 1.24 and pressure p = 0.115
are around the critical point. Velocity rescaling was used as
the thermostat7 with a time step 0.01. For the pressure con-
trol, Monte Carlo volume moves were tried every two MD
steps with a maximal magnitude of ±2.0% of the side length
of the box. The trajectory contained 107 steps with the time
step dt = 0.002.

From the trajectory, we constructed two samples. In the
test sample, one out of every 100 frames was used. In the ref-
erence one, all frames were used. The setting avoided pos-
sible sampling inaccuracy to affect the comparison of dif-
ferent methods, as explained in Appendix D. In both case,
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FIG. 3. The volume distributions (a) ρ(V ) and (b) ρ̂(V ) (adjusted) at p = 0.115 and T = 1.24. Gray line in (a): the histogram; blue circles and dashed lines: the
fractional identity; red squares and dot-dashed lines: pure mean-force integration (the limiting case of an infinite window). Inset of (a): the window size. Data
from the same test sample were used for all three; symbol spacing �V was 50.0 to avoid cluttering. The reference curves (black lines) were computed from the
reference sample (same trajectory, higher sampling rate), adjusted in (b). Lines were plotted with a spacing equal to the bin size δV = 1.0.

histogram-like data were collected using a bin width δV

= 1.0. Unless specified otherwise, the test sample was used.
Since the volume changed almost by an order of mag-

nitude, and the mean force fluctuation σf ∝ 1/V , a fixed
window size was not suitable. Thus we applied Eq. (6) with
σ f estimated from a local window, and γ = 1.5 (heuristic
value).

To apply the correction, we further computed 〈pc〉V from
a second integral identity, Eqs. (B1) and (B2), in Appendix B.
The window size of the second identity was similarly deter-
mined from the local σ f but with γ = 3.0.

As shown in Fig. 3, the volume distribution ρ(V ) or ρ̂(V )
from the fractional identity was smoother than the histogram

but still had some roughness. From the inset, we observe that
the window size grew linearly with the volume V. This ex-
ample also clearly illustrates the danger of using an overly
large window. We show in Fig. 3 the distribution from a
pure mean-force integration ρ(V ) = exp[

∫ V (log ρ)′(V ′)dV ′]
(which is the limiting case of using an infinite window, also
corrected to the corresponding ρ̂(V ) in Fig. 3(b)) manifested
a much larger deviation from the reference. The deviation was
however not systematic and diminished with the sample size:
when calculated from the larger reference sample, the devi-
ation was hardly noticeable, see Fig. 6(b). The comparison
shows choosing a proper window is crucial to the success of
the method.
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C. Radial distribution function

In the third application, we compute a radial distribution
function g(r). Given a test particle is at the origin, g(r) gives
the relative probability density of finding another particle at a
distance r away, such that g(r) = 1 in a non-interacting sys-
tem. It relates to the radial distribution density ρ(r) by

ρ(r) = 4πr2g(r)/V (9)

with V being the volume of the simulation box, and
4 πr2dr/V gives the probability of finding a different par-
ticle in a spherical shell of a radius r and thickness dr around
the test particle, if the particles were non-interacting. ρ(r)

is normalized as
∫ √

3L/2
0 ρ(r)dr = 1, where L = 3

√
V is the

box size and
√

3L/2 is maximal distance between two parti-
cle under the periodic boundary condition and minimal image
convention9 (of course with r > L/2, ρ(r) becomes unphysi-
cal and should not be used). Thus, we modify Eq. (1) to

g(r∗) =
∫ r+
r−

ρ(r)dr∫ r+
r−

4πr2/V exp
[∫ r

r∗ (log g)′(y)dy
]
dr

.

To derive the mean force in a canonical ensemble, where
w(r) ∝ exp[−βU (rN )], with β being the reciprocal temper-
ature, we apply Eq. (5) with a vector field vi = 1

2 r̂12(δ1i

− δ2i), where i is the particle index. Since ∇ · v = 2/r12 with
r12 = |r12|, we have (log ρ)′(r) = 〈∇ · v + βv · F〉r = 2/r

+ 1
2β〈r̂12 · F12〉r , where r̂12 = r12/r12 is the unit displace-

ment vector from particles 2 to 1, F12 = F1 − F2 is the differ-
ence between the forces exerted on particles 1 and 2, and the
average is evaluated at r12 = r. By Eq. (9),

(log g)′(r) = (log ρ)′(r) − 2/r = 1
2β〈r̂12 · F12〉r .

We simulated the 256 Lennard-Jones system with the
density ρ = 0.7 under two different temperatures T1 = 0.85
and T2 = 0.4, using the switched potential (rs = 2.5 and
rc = 3.5). Velocity rescaling with time step 0.01 was used
as the thermostat.7

After 106 steps of equilibration, we simulated another 107

steps with a time step dt = 0.002. We then constructed two
samples from this trajectory; for the test sample, we picked 5
frames (from every 2 × 106 steps), and for the reference one,
5000 frames (every 2000 steps). The setting avoided possi-
ble sampling inaccuracy to affect the comparison of different
methods, as explained in Appendix D. Unless specified oth-
erwise, the test sample was used. Note that each frame still
contributes 256 × 255/2 = 32640 pairs of particles, although
only half (π /6 ≈ 0.5) of them satisfy r < L/2. The bin size δr
= 0.002 was used in collecting histogram-like data.

Since this example was also used in the original paper
from Adib and Jarzynski,1 it is instructive to compare the two
identities. We include the AJ identity [Eq. (20) in Ref. 1] here
for convenience,

g(r∗) = e−βu(r∗)

V�∗/V

[∫ Rmax

R1

ρ(r)eβu(r)dr

+β

∫ Rmax

0
ρ(r)φ(r, r∗)Fr (r)dr

]
, (10a)

φ(r, r∗) = eβu(r)

3r2

[(
r3 − R3

1

)
θ (r − R1)

+ (
R3

1 − R3
max

)
θ (r − r∗)

]
, (10b)

where r is the distance from the test particle, u(r) is the pair
potential (see Appendix C), V�∗ = (4π/3)(R3

max − R3
1), R1 is

a distance close to the repulsion core (we used R1 = 1.0 here),
Rmax is half of the simulation box size, θ (x) is the step func-
tion: 1 if x > 0, 0 otherwise, Fr (r) = 〈r̂ · F(r)〉|r|=r + u′(r)
is the radial mean force of a particle at a distance r away
from the test particle, excluding the contribution from the test
particle.

As shown in Figure 4, the fractional identity produced
smooth distributions with good agreement with the respec-
tive references in both temperatures, despite a relatively small
sample size. On the other hand, although the AJ identity also
produced smooth distributions, there was an appreciable de-
viation at the lower temperature T2 = 0.4 from the refer-
ence, especially around the principle peak r ≈ 1.1. The devi-
ation was again not systematic, as it became negligible when
the calculation was performed on the reference sample, see
Figs. 6(c) and 6(d). We note the large deviations from the AJ
identity were similar to those observed in the previous ex-
ample of the volume distribution when the mean-force inte-
gration was used to produce the distribution. Thus they were
likely due to an overly large window, as the entire range of
r, from 0 to Rmax, was used as the window by the AJ identity
Eq. (10a). The error was larger at a lower temperature be-
cause the mean force changed more drastically there (hence
larger mean force fluctuation). By contrast, in the fractional
identity case, smaller windows, �r = 0.14 for T1 = 0.85 and
�r = 0.09 for T2 = 0.4 were used according to Eq. (6) (γ
= 1.5), and thus the output was more robust. We also note
that the optimal window size shrunk at the lower tempera-
ture. The trend is universal, since fx has a component βv · F
in the canonical ensemble, as one increases β (or lowers the
temperature), the fluctuation grows, and thus the window size
shrinks. The example again illustrates the critical influence
from the window size.

D. Amino acid backbone dihedral angles

Finally, we compute a joint distribution ρ(ϕ, ψ) of the
two backbone dihedrals ϕ and ψ of a glycine dipeptide. Here
ϕ and ψ are the C′–N–Cα–C and N–Cα–C–N′ dihedral an-
gles, respectively. We first generalize Eq. (1) to the two di-
mensional case

ρ(ϕ∗, ψ∗) =
∫ ψ+
ψ−

∫ φ+
φ−

ρ(ϕ,ψ)dφdψ∫ ψ+
ψ−

∫ φ+
φ−

exp[log ρ(ϕ,ψ)− log ρ(ϕ∗, ψ∗)]dφdψ
.

On the denominator, log ρ(ϕ, ψ) can still be computed
from the two mean force components ∂

∂ϕ
log ρ(ϕ,ψ) and

∂
∂ψ

log ρ(ϕ,ψ), but not via a direct integration, as the calcu-
lation is an overdetermined one (i.e., one distribution but two
derivatives). Instead, we constructed log ρ(ϕ, ψ) in such a
way that its two partial derivatives matched the observed val-
ues with a minimal overall deviation, see Appendix E.
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FIG. 4. The radial distribution function g(r). (a) T1 = 0.85; (b) T2 = 0.4. Gray line: the histogram; blue circles and dashed line: the fractional identity; red
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The mean forces are computed as averages as
∂
∂ϕ

log ρ(ϕ,ψ) = 〈βvϕ · F〉ϕ,ψ and ∂
∂ψ

log ρ(ϕ,ψ) = 〈β vψ ·
F〉ϕ,ψ , in which β is the temperature, F is the force, and the
two vector fields vϕ = ∇1ϕ/(∇1ϕ · ∇1ϕ), vψ = ∇4ψ/(∇4ψ ·
∇4ψ). Note that by ∇1ϕ and ∇4ψ , we mean the gradient com-
ponents from the atom C′ for ϕ, and those from the atom N′

for ψ , respectively. The above mean force formulas were free
from both the cross correlation and the two divergences ∇ ·
u and ∇ · v, see Appendix F for details.

We dissolved the glycine dipeptide in a 32 × 32 × 32
Å3 TIP3P11 water box, and ran the simulation for 36 ns with a
time step 1 fs. All chemical bonds of the peptide were allowed
to vibrate. A double precision GROMACS 4.512 was used
as the simulating engine. The velocity rescaling method,7

SETTLE,13 and particle meshed Ewald (PME) sum14 were
used for thermostat, constraints in water molecules and long
range electrostatic interaction, respectively. Non-bonded in-
teractions were cutoff at 7 Å and shifted to zero until 8 Å.
The PME grid spacing was 12 Å. Dihedral data were collected
every step using a 1◦ × 1◦ bin.

Due to a relatively large mean force fluctuation, we were
only able to use small 4◦ × 4◦ windows for the fractional
identity, according to Eq. (6) (however, in case the window
was empty, we expanded the window symmetrically until it
included at least one data point). In Fig. 5, we show that the
distribution ρ(ϕ, ψ) from the fractional identity improved the
smoothness over that from the normalized histogram. Partic-
ularly, the barrier regions, e.g., ϕ ≈ 0◦ and ψ ≈ ±100◦ were
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FIG. 5. The joint distribution of the two backbone dihedrals in the glycine dipeptide. (a) The histogram; (b) the fractional identity.

enhanced. Additionally the forbidden band at ϕ ≈ ±180◦,
where the histogram was simply missing, was now filled
by small but finite numbers. On the other hand, peaks at
the helical and extended conformations were well preserved.
Nonetheless, the overall gain in this case was very modest due
to the large mean force fluctuation.

IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, we presented an identity, Eqs. (1) and (5),
for estimating a general statistical distribution from data
collected in molecular simulations. The new identity has
broad applications (e.g., to any variable x and any en-
semble, easily extended to higher dimensional distributions,
etc.), and at the same time offers a robust and precise
output.

The general expression for the conjugate force fx Eq.
(5) is also simpler than the conventional −β ∂U/∂x =
−β ∇U · ∂rN/∂x15 in that it avoids an inconvenient co-
ordinate transformation in computing ∂ rN/∂x by replac-
ing it with a simpler dot product β v · F plus a diver-
gence ∇ · v. Thus, it is straightforwardly applicable, at least
in principle, to an arbitrary x = X(rN). Though the com-
putation of the divergence adds computational complexity,
it can be sometimes simplified or avoided with a careful
choice of the vector field v (as illustrated in the dihedral
example).

We also showed that the window size should be carefully
chosen to maximize the benefit from the identity. An overly
wide window risks a large error from the mean-force integra-
tion, although it usually yields a smoother distribution.

Finally, we distinguish the method from an explicit
smoothing method16 in that this method does not assume a
smooth distribution. Although the use of the mean force (log
ρ)′ implies a differentiable distribution density ρ(x), the mean
force itself can be as oscillatory as an apparent noise. It is pos-
sible that with some approximations, the method can be fur-

ther improved by introducing elements of the explicit smooth-
ing techniques.
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APPENDIX A: ALTERNATIVE DERIVATION
OF THE FRACTIONAL IDENTITY

We first rephrase the work of Adib and Jarzynski in our
context. The presentation is given with respect to a general
distribution, and thus formally differs from the original one,1

which focused on a radial distribution. Nevertheless, the basic
features are similar. First, any function ρ(x) at x = x* can be
evaluated as an integral over (x−, x*) as

ρ(x∗) = ρ(x∗) φ(x∗) − ρ(x−) φ(x−)

=
∫ x∗

x−
[ρ(x) φ′(x) + ρ ′(x) φ(x)]dx,

where φ(x) is an arbitrary function under two conditions,
φ(x−) = 0 and φ(x*) = 1; on the second line, the difference is
converted to an integral within the window.

The domain of integration can be enlarged to a window
(x−, x+) that encloses x* by applying the above equation to
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two windows (x−, x*) and (x*, x+), (x – < x* < x+) with dif-
ferent φ(x)’s, and then linearly combining them, see Fig. 1(b),

ρ(x∗) =
∫ x+

x−
[ρ(x) φ′(x) + ρ ′(x) φ(x)]dx, (A1)

where the combined φ(x) satisfies{
φ(x+) = φ(x−) = 0,

φ(x∗−) − φ(x∗+) = 1,
(A2)

with φ(x*−) and φ(x*+), the values of φ(x) immediately at
the left and right of x* respectively, serving as coefficients of
combining the two windows. The function φ(x) is equivalent
to the vector field u(r) in the original paper.1

The problem of Eq. (A1) is that it does not always yield
a positive output since the correction from ρ ′(x) can acciden-
tally overthrow the histogram contribution.

We now derive the fractional identity Eq. (1) from
Eq. (A1). We start from a simple observation: if f(x) is a func-
tion that equals to unity at x = x*, i.e., f(x*) = 1, then Eq. (A1)
applies not only to ρ(x) itself, but also to the product ρ(x) f(x),
i.e.,

ρ(x∗) =
∫ x+

x−
[ρ(x)f (x)]φ′(x)dx +

∫ x+

x−
[ρ(x)f (x)]′φ(x)dx.

An arbitrary f(x), or equivalently a reference
distribution,1, 15 does not guarantee a non-negative out-
put. However, if we choose f(x) such that ρ(x)f(x) a constant,
the second term on the right-hand side of the above equation
vanishes, and

ρ(x∗) =
∫ x+

x−
[ρ(x)f (x)]φ′(x)dx. (A3)

Thus ρ(x*) is nonnegative as long as φ′(x) is so. The func-
tion f(x) is obtained by integrating the distribution mean force
from the boundary f(x*) = 1 as

f (x) = exp{−[log ρ(x) − log ρ(x∗)]}

= exp

(
−

∫ x

x∗
(log ρ)′(y)dy

)
.

It is easily verified that d
dx

log f (x) = − d
dx

log ρ(x) and hence
d
dx

[ρ(x)f (x)] = 0.
Finally, we determine φ(x) based on the observation that

φ′(x) acts as a weight in Eq. (A3). Thus, to minimize sta-
tistical error, φ′(x) should be inversely proportional to the
variance of ρ(x) f(x).9 For a small window, we assume that
the error of ρ(x) f(x) comes mainly from the number of
visits ρ(x) instead of the modulation factor f(x). Addition-
ally, we assume the variance of ρ(x) is proportional to ρ(x),
i.e., a Poisson distribution,9 we thus have Var[ρ(x) f (x)]
= Var[ρ(x)] f 2(x) ∝ ρ(x) f 2(x) ∝ f (x). φ′(x) can now be
written as C/f (x), where the constant C is determined
from Eqs. (A2) as 1 = φ(x∗−) − φ(x−) + φ(x+) − φ(x∗+)
= ∫ x+

x−
φ′(x)dx (the singularity at x = x* is ignored). Solving

the equation gives C = 1/
∫ x+
x−

exp
(∫ x

x∗ (log ρ)′(y)dy
)
dx, and

Eq. (1) is recovered.

APPENDIX B: IMPROVING THE MEAN FORCE

We sometimes need a precise mean force (log ρ)′(x)
itself. If the second-order derivative (log ρ)′′(x) is avail-
able, one can apply an Adib-Jarzynski-like identity (see
Appendix A) as

(log ρ)′(x0) =
∫ x+

x−
[ϕ′(y)(log ρ)′(y) + ϕ(y)(log ρ)′′(y)]dy,

(B1)
where ϕ(x) satisfies ϕ(x−) = ϕ(x+) = 0, ϕ(x0 − δ) − ϕ(x0

+ δ) = 1. For simplicity, we use a linear function ϕ(x) = (x
− xb)/(x+ − x−), with xb = x− if x < x0 or xb = x+ otherwise.
Note that the window (x−, x+) can be different from that in
Eq. (1). An averaging expression for computing (log ρ)′′(x)
can be found by taking the derivative of Eq. (5)

(log ρ)′′(x) = 〈(�fx)2〉x + 〈vx · ∇fx〉x , (B2)

where vx denotes the vector field given by Eq. (4) or (4′) for
the quantity x.

Equations (B1) and (B2) are particularly useful in com-
puting the volume distribution, in which a smooth mul-
tiplicative correction term β〈pc(V )〉V can be obtained
from the mean force (log ρ)′(V ) = β(〈pc(V )〉V − p) us-
ing the above method.In the following, we list the formu-
las of vx · ∇fx for the first three examples in Sec. III.
For the potential energy distribution in the canonical
ensemble, fU = ∇ · v − β,

vU · ∇fU =−F · ∇∇2U

(F · F)2
− ∇2U M + h · h − 2FFF

...∇∇∇U

(F · F)3

+ 2M2

(F · F)4
,

where F = −∇U is the molecular force, M ≡ 2F · ∇∇U · F,
h = 2∇∇U · F, and the “

...” denotes the triple dot product be-
tween two tensors of order three. For the microcanonical en-
semble, we add an additional term −( 1

2Nf − 1)/(Etot − U )
2

to the above formula.
For the volume distribution, v · ∇ → ∂/∂V , fV = N/V

− β∂U/∂V , and

vV · ∇fV = ∂ fV

∂V
= − N

V 2
− β ∂2U

∂V 2

= − N

V 2
− β

∑
(m,n) [ψ(rmn) r4

mn − φ(rmn) r2
mn]

9V 2
,

where on the second line, we have assumed the potential en-
ergy U is a sum over particle pairs (m, n) for the molecular po-
tential u(r), i.e., U = ∑

(m,n) u(rmn), and φ(r) = u′(r)/r, ψ(r)
= φ′(r)/r. For the radial distribution function of a pair of par-
ticles 1 and 2,

vr · ∇fr = −β[ψ(r12)r2
12 + φ(r12)]

−β
∑
k �=1,2

[
ψ(r1k)(r1k · r12)2 + ψ(r2k)(r2k · r12)2

4r2
12

+ φ(r1k) + φ(r2k)

4

]
,

where rjk is the displacement vector from k to j, and rjk = |rjk|.
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APPENDIX C: SWITCHED LENNARD-JONES
POTENTIAL

The Lennard-Jones potential u(r) = 4ε[(σ /r)12 − (σ /r)6]
is switched at r = rs to a polynomial

∑7
k=4 ak(r − rc)k and

extended to zero at r = rc. For simplicity, we assume the
reduced unit, whereby both the energy unit ε and diam-
eter σ are 1.0. In our application of the energy distribu-

tion, we need the potential and the first three derivatives
to be continuous, since the derivative of the dynamic tem-
perature requires up to the third-order derivative of the po-
tential. The continuity at r = rc is guaranteed by the first
four vanishing coefficients. To ensure the continuity up to
third-order derivatives at r = rs, the following parameters are
used:

a4 = 4
(
35 r3

s A + 90 r2
s �r B + 15 rs �r2C + 28 �r3D

)
/
(
�r4 r15

s

)
,

a5 = −24
(
14 r3

s A + 39 r2
s �r B + 7 rs �r2C + 14 �r3D

)
/
(
�r5 r15

s

)
,

a6 = 4
(
70 r3

s A + 204r2
s �r B + 39 rs �r2C + 84 �r3D

)
/
(
�r6 r15

s

)
,

a7 = −16
(
5 r3

s A + 15 r2
s �r B + 3 rs �r2C + 7 �r3D

)
/
(
�r7 r15

s

)
,

where, �r = rc − rs, A = 1 − r6
s ,B = 2 − r6

s , C = 26 − 7r6
s , and D = 13 − 2r6

s .

APPENDIX D: THE REFERENCE DISTRIBUTIONS

In each of Secs. III A–III C, we prepared both the test and
reference samples from the same trajectory but with differ-
ent sampling rates of picking frames. Since frames in the test
sample were just a subset of those in the reference one, any
sampling inaccuracy, e.g., due to insufficient equilibration or
sampling, would be shared by both samples, and thus would
not affect the comparison of different methods. We also em-
phasize that, in either sample, the numbers of sampling points
available to different methods were exactly the same.

We have used the fractional identity to produce the ref-
erence distributions, in Figs. 2–4, which might be unfair to
the alternative identities. However, due to the large size of
the reference sample, the reference distributions were insen-
sitive to what method we choose. In Fig. 6, we show that the
results from the fractional identity agreed well with the prop-
erly normalized histograms, as well as those from alternative
identities [compare Figs. 2 with 6(a), 3 with 6(b), and 4 with
6(c) and 6(d)]. The latter comparison also shows the alterna-
tive identities are unbiased, although less stable in handling
smaller sample size. Note that we used the WHAM version
in producing the reference distribution in Fig. 3(a), which fur-
ther improved the one in Fig. 6(a) at the edges.

APPENDIX E: POTENTIAL FROM THE
TWO-DIMENSIONAL MEAN FORCE

Unlike the one-dimensional case, determining a two-
dimensional “potential” u(x, y) ≡ log ρ from the two mean
force components f = ∂u/∂x and g = ∂u/∂y is an overdeter-

mined problem, as the number of variables is only half of the
number of the equations. Thus we seek the “best fit” in the
following.

We assume the potential is set up on a two-dimensional
grid of N × M with a cell (bin) size δx × δy. For a cell at (n,
m), where n = 1, 2, . . . N, m = 1, 2, . . . M, we wish to min-
imize the difference between the mean force value from fn, m

and that from discretely differentiating the u values at four
cell corners (un+1,m + un+1,m+1 − un,m − un,m+1)/(2δx) (and
similarly for gn, m). To the end, we minimize the following
action S:

S = 1

2

∑
n,m

[(
un+1,m + un+1,m+1 − un,m − un,m+1

2
− fn,m δx

)2

+
(

un,m+1 + un+1,m+1 − un,m − un+1,m

2
− gn,m δy

)2
]

.

At the minimum, we must have ∂S/∂un,m = 0 for every un, m,
i.e.,

un,m − un−1,m−1 + un−1,m+1 + un+1,m−1 + un+1,m+1

4

= fn−1,m−1 + fn−1,m − fn,m−1 − fn,m

4
δx

+ gn−1,m−1 + gn,m−1 − gn−1,m − gn,m

4
δy.

The set of linear equations can be
solved using Fourier transform. With ũk.l

= ∑
n,m un,m exp[−2πi(kn/N + lm/M)] (f̃k,l and g̃k,l

similarly defined), we have

ũk,l = −i exp
[−πi

(
k
N

+ l
M

)] [
sin

(
π k
N

)
cos

(
π l
M

)
f̃k,l δx + cos

(
πk
N

)
sin

(
πl
M

)
g̃k,lδy

]
1 − cos

(
2πk
N

)
cos

(
2πl
M

) .
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FIG. 6. Distributions computed from the reference samples: (a) the energy distributions; (b) the volume distributions; (c) and (d) the radial distribution functions
at T1 = 0.85 and T2 = 0.4, respectively. Gray dotted lines: histograms; blue solid lines: fractional identity; red dashed lines: alternative identities, as those in
Figs. 2–4.

A final inverse Fourier transform yields the desired
potential un, m in the real space.

APPENDIX F: ON THE DIHEDRAL DISTRIBUTION

Here we derive a general mean force formula [analogous
to Eq. (5)] for the joint dihedral distribution. We start from the

definition

ρ(ϕ, ψ) =
∫

δ(ϕ − �(rN )) δ(ψ − �(rN )) w(rN ) drN .

Following a similar derivation leading to Eq. (5), we
have

∂

∂ϕ
ρ(ϕ, ψ) =

∫
−vϕ · ∇[δ(ϕ − �(rN ))] δ(ψ − �(rN )) w(rN ) drN

=
∫

δ(ϕ − �(rN ))∇ · [vϕ δ(ψ − �(rN )) w(rN )] drN

=
∫

(∇ · vϕ + vϕ · ∇ log w) δ(ϕ − �) δ(ψ − �) w drN

− ∂

∂ψ

∫
(vϕ · ∇�)δ(ϕ − �)δ(ψ − �)wdrN,
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where vϕ is a vector field satisfying vϕ · ∇� = 1. We note
that the last integral, which is hard to evaluate, vanishes if
vϕ · ∇� = 0. Thus we shall generalize Eq. (4′) to satisfy both
vϕ · ∇� = 1 and vϕ · ∇� = 0 as

vϕ = (∇� · Yψ )Yϕ − (∇� · Yϕ) Yψ

(∇� · Yψ )(∇� · Yϕ) − (∇� · Yϕ)(∇� · Yψ )
,

(F1)
where Yϕ and Yψ are such vector fields that ∇� · Yϕ �= 0
and ∇� · Yψ �= 0. Similarly

vψ = (∇� · Yϕ)Yψ − (∇� · Yψ )Yϕ

(∇� · Yϕ)(∇� · Yψ ) − (∇� · Yψ )(∇� · Yϕ)
.

(F2)

If the two dihedrals are decoupled ∇� · Yψ = ∇� ·
Yϕ = 0, Eqs. (F1) and (F2) are then reduced to Eq. (4′), i.e.,
vϕ = Yϕ/(∇� · Yϕ) and vψ = Y�/(∇� · Y�). This condi-
tion is satisfied if Yϕ = ∇1� and Yψ = ∇4�, i.e., the com-
ponents from the atom C′ in C′–N–Cα–C for ∇�, and those
from the atom N′ in N–Cα–C–N′ for ∇�.

We can also show that in this case ∇ · vϕ = ∇ · vψ = 0
(i.e., if only the 1, 4 atoms are involved in Yϕ and Yψ ). Using
� as example, we first label the C′, N, Cα , and C atoms by 1,
2, 3, and 4, respectively, and express the cosine of the dihe-
dral as cos � = m̂ · n̂, where m̂ = m/m and n̂ = n/n are the
unit vectors of the planes 1-2-3 and 2-3-4, respectively, with
m = r12 × r32, m = |m|, n = r32 × r34 and n = |n|. The
components of the gradient are listed below:

∇1� = r32 m̂/m,

∇2� = (r13 · r̂32) m̂/m − (r43 · r̂32) n̂/n,

∇3� = (r42 · r̂32) n̂/n − (r12 · r̂32) m̂/m,

∇4� = −r32 n̂/n.

(F3)

For completeness, we sketch a geometric derivation of
Eqs. (F3). First, the gradient of particle 1 must be parallel
to m̂, since a displacement within the plane 1-2-3 leaves the
plane vector m̂ and hence cos � unchanged. The magnitude of
the gradient is the inverse of the perpendicular distance from
particle 1 to the line connecting particles 2 and 3, or |∇1�|
= r32/m. Thus ∇1� = (r32/m)m̂. Similarly, ∇4�

= −r32n̂/n. The equation for ∇2� can be derived
from that the dihedral is invariant upon a rotation
around any axis h passing through particle 3, i.e.,∑

a=1,2,4 ∇a� · (h × ra3) = 0. By using h = m and n,

and solving the equations for ∇2�, we reach the second
equation. The equation for ∇3� follows from the invariance
of the dihedral upon any translation d,

∑
a=1,2,3,4 ∇a� · d

= 0, or ∇3� = −(∇1� + ∇2� + ∇4�).
Now if Yϕ = ∇1�, then vϕ,i = (m/r32) m̂δi1. Thus the

gradient flow forms concentric circles around the axis con-
necting particles 2 and 3. From Gauss’s law, we must have
∇ · vϕ = 0 for the flow has no source or sink. We have thus
reached the formulas given in the main text for the canoni-
cal ensemble: ∂

∂ϕ
log ρ(ϕ, ψ) = 〈β vϕ · F〉ϕ,ψ (and similarly

∂
∂ψ

log ρ(ϕ, ψ) = 〈β vψ · F〉ϕ,ψ ).

1A. B. Adib and C. Jarzynski, J. Chem. Phys. 122(1), 014114
(2005).

2A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N.
Vorontsovvelyaminov, J. Chem. Phys. 96(3), 1776 (1992); E. Marinari and
G. Parisi, Europhys. Lett. 19(6), 451 (1992); C. Zhang and J. Ma, Phys.
Rev. E 76, 036708 (2007).

3R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 57(21), 2607 (1986);
C. J. Geyer, Proceedings of the 23rd Symposium on the Interface (American
Statistical Association, New York, 1991); K. Hukushima and K. Nemoto,
J. Phys. Soc. Jpn. 65(6), 1604 (1996); U. H. E. Hansmann, Chem. Phys.
Lett. 281(1–3), 140 (1997).

4H. Rugh, Phys. Rev. Lett. 78, 772 (1997).
5A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61(23), 2635
(1988); A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63(12),
1195 (1989); J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, and K. A.
Dill, J. Chem. Theory Comput. 3(1), 26 (2007); J. Kim, T. Keyes, and J. E.
Straub, J. Chem. Phys. 135 (6), 061103 (2011).

6B. D. Butler, G. Ayton, O. G. Jepps, and D. J. Evans, J. Chem. Phys.
109(16), 6519 (1998); O. G. Jepps, G. Ayton, and D. J. Evans, Phys. Rev. E
62(4 Pt A), 4757 (2000); Q. Yan and J. J. de Pablo, Phys. Rev. Lett. 90(3),
035701 (2003); C. Braga and K. P. Travisa, J. Chem. Phys. 123, 134101
(2005); A. B. Adib, Phys. Rev. E 71(5 Pt 2), 056128 (2005).

7G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126(1), 014101
(2007).

8W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numer-
ical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge
University Press, Cambridge, 1992).

9D. Frenkel and B. Smit, Understanding Molecular Simulation from Algo-
rithms to Applications, 2nd ed. (Academic, 2002).

10G. J. M. Koper and H. Reiss, The J. Phys. Chem. 100(1), 422 (1996).
11W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. I. Impey, and

M. L. Klein, J. Chem. Phys. 79, 926 (1983).
12D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J.

Berendsen, J. Comput. Chem. 26(16), 1701 (2005).
13S. Miyamoto and P. A. Kollman, J. Comput. Chem. 13(8), 952 (1992).
14U. Essmann, L. Perela, M. L. Berkowitz, T. Darden, H. Lee, and L. G.

Pedersen, J. Chem. Phys. 103, 8577 (1995).
15J. E. Basner and C. Jarzynski, J. Phys. Chem. B 112(40), 12722

(2008).
16B. A. Berg and R. C. Harris, Comput. Phys. Commun. 179, 443 (2008); R.

van Zon and J. Schofield, J. Chem. Phys. 132(15), 154110 (2010).

http://dx.doi.org/10.1063/1.1829631
http://dx.doi.org/10.1063/1.462133
http://dx.doi.org/10.1209/0295-5075/19/6/002
http://dx.doi.org/10.1103/PhysRevE.76.036708
http://dx.doi.org/10.1103/PhysRevE.76.036708
http://dx.doi.org/10.1103/PhysRevLett.57.2607
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1016/S0009-2614(97)01198-6
http://dx.doi.org/10.1016/S0009-2614(97)01198-6
http://dx.doi.org/10.1103/PhysRevLett.78.772
http://dx.doi.org/10.1103/PhysRevLett.61.2635
http://dx.doi.org/10.1103/PhysRevLett.63.1195
http://dx.doi.org/10.1021/ct0502864
http://dx.doi.org/10.1063/1.3626150
http://dx.doi.org/10.1063/1.477301
http://dx.doi.org/10.1103/PhysRevE.62.4757
http://dx.doi.org/10.1103/PhysRevLett.90.035701
http://dx.doi.org/10.1063/1.2013227
http://dx.doi.org/10.1103/PhysRevE.71.056128
http://dx.doi.org/10.1063/1.2408420
http://dx.doi.org/10.1021/jp951819f
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1002/jcc.20291
http://dx.doi.org/10.1002/jcc.540130805
http://dx.doi.org/10.1063/1.470117
http://dx.doi.org/10.1021/jp803635e
http://dx.doi.org/10.1016/j.cpc.2008.03.010
http://dx.doi.org/10.1063/1.3366523



