167,087 research outputs found

    When do neutrinos cease to oscillate?

    Get PDF
    In order to investigate when neutrinos cease to oscillate in the framework of quantum field theory, we have reexamined the wave packet treatment of neutrino oscillations by taking different sizes of the wave packets of the particles involved in the production and detection processes. The treatment is shown to be considerably simplified by using the Grimus-Stockinger theorem which enables us to carry out the integration over the momentum of the propagating neutrino. Our new results confirm the recent observation by Kiers, Nussinov and Weiss that a precise measurement of the energies of the particles involved in the detection process would increase the coherence length. We also present a precise definition of the coherence length beyond which neutrinos cease to oscillate.Comment: 10 pages, no figure

    Pulsar Velocity with Three-Neutrino Oscillations in Non-adiabatic Processes

    Full text link
    We have studied the position dependence of neutrino energy on the Kusenko-Segr\`{e} mechanism as an explanation of the proper motion of pulsars. The mechanism is also examined in three-generation mixing of neutrinos and in a non-adiabatic case. The position dependence of neutrino energy requires the higher value of magnetic field such as B∼3×1015B\sim 3\times 10^{15} Gauss in order to explain the observed proper motion of pulsars. It is shown that possible non-adiabatic processes decrease the neutrino momentum asymmetry, whereas an excess of electron neutrino flux over other flavor neutrino fluxes increases the neutrino momentum asymmetry. It is also shown that a general treatment with all three neutrinos does not modify the result of the two generation treatment if the standard neutrino mass hierarchy is assumed.Comment: 8 pages, REVTEX, no figure

    Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions

    Get PDF
    Results are presented for a ductile metal reinforced bulk metallic glass matrix composite based on glass forming compositions in the Zr-Ti-Cu-Ni-Be system. Primary dendrite growth and solute partitioning in the molten state yields a microstructure consisting of a ductile crystalline Ti-Zr-Nb β phase, with bcc structure, in a Zr-Ti-Nb-Cu-Ni-Be bulk metallic glass matrix. Under unconstrained mechanical loading organized shear band patterns develop throughout the sample. This results in a dramatic increase in the plastic strain to failure, impact resistance, and toughness of the metallic glass

    Large supercooled liquid region and phase separation in the Zr–Ti–Ni–Cu–Be bulk metallic glasses

    Get PDF
    Results of calorimetric, differential thermal analysis, and structural measurements are presented for a series of bulk metallic glass forming compositions in the Zr-Ti-Cu-Ni-Be alloy system. The calorimetric data for five alloys, prepared along the tie line between phase separating and nonphase separating compositions, show that the transition from phase separating to nonphase separating behavior is smooth. The bulk glasses near the center of the tie line exhibit large supercooled liquid regions: Delta T approximate to 135 K, the largest known for a bulk metallic glass

    Arterial pulse wave pressure transducer

    Get PDF
    An arterial pulse wave pressure transducer is introduced. The transducer is comprised of a fluid filled cavity having a flexible membrane disposed over the cavity and adapted to be placed on the skin over an artery. An arterial pulse wave creates pressure pulses in the fluid which are transduced, by a pressure sensitive transistor in direct contact with the fluid, into an electric signal. The electrical signal is representative of the pulse waves and can be recorded so as to monitor changes in the elasticity of the arterial walls

    An economical arterial-pulse-wave transducer

    Get PDF
    Transducer records arterial pulses externally. Device uses thin plastic membrane which is fluid coupled to pressure sensitive transistor. Transistor is connected to amplifier which, in turn, is connected to recorder. End section is threaded to accept suitable holder and contains pressure relief vent allowing transistor to sense only pressure levels greater than atmospheric
    • …
    corecore