We have studied the position dependence of neutrino energy on the
Kusenko-Segr\`{e} mechanism as an explanation of the proper motion of pulsars.
The mechanism is also examined in three-generation mixing of neutrinos and in a
non-adiabatic case. The position dependence of neutrino energy requires the
higher value of magnetic field such as B∼3×1015 Gauss in order
to explain the observed proper motion of pulsars. It is shown that possible
non-adiabatic processes decrease the neutrino momentum asymmetry, whereas an
excess of electron neutrino flux over other flavor neutrino fluxes increases
the neutrino momentum asymmetry. It is also shown that a general treatment with
all three neutrinos does not modify the result of the two generation treatment
if the standard neutrino mass hierarchy is assumed.Comment: 8 pages, REVTEX, no figure