499 research outputs found

    Training certified detectives to track down the intrinsic shortcuts in COVID-19 chest x-ray data sets

    Get PDF
    Deep learning faces a significant challenge wherein the trained models often underperform when used with external test data sets. This issue has been attributed to spurious correlations between irrelevant features in the input data and corresponding labels. This study uses the classification of COVID-19 from chest x-ray radiographs as an example to demonstrate that the image contrast and sharpness, which are characteristics of a chest radiograph dependent on data acquisition systems and imaging parameters, can be intrinsic shortcuts that impair the model\u27s generalizability. The study proposes training certified shortcut detective models that meet a set of qualification criteria which can then identify these intrinsic shortcuts in a curated data set

    Non-ancient solution of the Ricci flow

    Full text link
    For any complete noncompact Kaš\ddot{a}hler manifold with nonnegative and bounded holomorphic bisectional curvature,we provide the necessary and sufficient condition for non-ancient solution to the Ricci flow in this paper.Comment: seven pages, latex fil

    A map of human protein interactions derived from co-expression of human mRNAs and their orthologs

    Get PDF
    The human protein interaction network will offer global insights into the molecular organization of cells and provide a framework for modeling human disease, but the network's large scale demands new approaches. We report a set of 7000 physical associations among human proteins inferred from indirect evidence: the comparison of human mRNA co-expression patterns with those of orthologous genes in five other eukaryotes, which we demonstrate identifies proteins in the same physical complexes. To evaluate the accuracy of the predicted physical associations, we apply quantitative mass spectrometry shotgun proteomics to measure elution profiles of 3013 human proteins during native biochemical fractionation, demonstrating systematically that putative interaction partners tend to co-sediment. We further validate uncharacterized proteins implicated by the associations in ribosome biogenesis, including WBSCR20C, associated with Williams–Beuren syndrome. This meta-analysis therefore exploits non-protein-based data, but successfully predicts associations, including 5589 novel human physical protein associations, with measured accuracies of 54±10%, comparable to direct large-scale interaction assays. The new associations' derivation from conserved in vivo phenomena argues strongly for their biological relevance

    Divergent Mitochondrial Biogenesis Responses in Human Cardiomyopathy

    Get PDF
    Background—Mitochondria are key players in the development and progression of heart failure (HF). Mitochondrial (mt) dysfunction leads to diminished energy production and increased cell death contributing to the progression of left ventricular failure. The fundamental mechanisms that underlie mt dysfunction in HF have not been fully elucidated. Methods and Results—To characterize mt morphology, biogenesis, and genomic integrity in human HF, we investigated left ventricular tissue from nonfailing hearts and end-stage ischemic (ICM) or dilated (DCM) cardiomyopathic hearts. Although mt dysfunction was present in both types of cardiomyopathy, mt were smaller and increased in number in DCM compared with ICM or nonfailing hearts. mt volume density and mtDNA copy number was increased by ≈2-fold (P<0.001) in DCM hearts in comparison with ICM hearts. These changes were accompanied by an increase in the expression of mtDNA-encoded genes in DCM versus no change in ICM. mtDNA repair and antioxidant genes were reduced in failing hearts, suggestive of a defective repair and protection system, which may account for the 4.1-fold increase in mtDNA deletion mutations in DCM (P<0.05 versus nonfailing hearts, P<0.05 versus ICM). Conclusions—In DCM, mt dysfunction is associated with mtDNA damage and deletions, which could be a consequence of mutating stress coupled with a peroxisome proliferator-activated receptor Îł coactivator 1α–dependent stimulus for mt biogenesis. However, this maladaptive compensatory response contributes to additional oxidative damage. Thus, our findings support further investigations into novel mechanisms and therapeutic strategies for mt dysfunction in DCM

    Observer Kalman Filter Identification of Suspen-Dome

    Get PDF

    Light funneling from a photonic crystal laser cavity to an optical nano-antenna: toward antenna-based laser nano-emission

    No full text
    International audienceWe show that the near-field coupling between a photonic crystal microlaser and a nanoantenna can enable hybrid photonic systems that are both physically compact and highly efficient at transferring optical energy into the nano-antenna. Up to 19.4% of the laser power from a micron-scale photonic crystal laser cavity is experimentally transferred to a bowtie aperture nano-antenna (BNA) whose area is 400-fold smaller than the overall emission area of the microlaser. Instead of a direct deposition of the nano-antenna onto the photonic crystal, it is fabricated at the apex of a fiber tip to be accurately placed in the near-field volume of the microlaser. Such light funneling within a hybrid structure provides a path for overcoming the diffraction limit in optical energy transfer to the nanoscale and should thus open promising avenues in the nanoscale enhancement and confinement of light in compact architectures, impacting applications such as biosensing, optical trapping, heating, spectroscopy, and nanoimaging

    Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition

    Get PDF
    The strong interest in graphene has motivated the scalable production of high quality graphene and graphene devices. Since large-scale graphene films synthesized to date are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient CVD on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene's electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman "D" peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material
    • 

    corecore