4,344 research outputs found
The in-plane electrodynamics of the superconductivity in Bi2Sr2CaCu2O8+d: energy scales and spectral weight distribution
The in-plane infrared and visible (3 meV-3 eV) reflectivity of
Bi2Sr2CaCu2O8+d (Bi-2212) thin films is measured between 300 K and 10 K for
different doping levels with unprecedented accuracy. The optical conductivity
is derived through an accurate fitting procedure. We study the transfer of
spectral weight from finite energy into the superfluid as the system becomes
superconducting. In the over-doped regime, the superfluid develops at the
expense of states lying below 60 meV, a conventional energy of the order of a
few times the superconducting gap. In the underdoped regime, spectral weight is
removed from up to 2 eV, far beyond any conventional scale. The intraband
spectral weight change between the normal and superconducting state, if
analyzed in terms of a change of kinetic energy is ~1 meV. Compared to the
condensation energy, this figure addresses the issue of a kinetic energy driven
mechanism.Comment: 13 pages with 9 figures include
Multiple Histogram Method for Quantum Monte Carlo
An extension to the multiple-histogram method (sometimes referred to as the
Ferrenberg-Swendsen method) for use in quantum Monte Carlo simulations is
presented. This method is shown to work well for the 2D repulsive Hubbard
model, allowing measurements to be taken over a continuous region of
parameters. The method also reduces the error bars over the range of parameter
values due the overlapping of multiple histograms. A continuous sweep of
parameters and reduced error bars allow one to make more difficult
measurements, such as Maxwell constructions used to study phase separation.
Possibilities also exist for this method to be used for other quantum systems.Comment: 4 pages, 5 figures, RevTeX, submitted to Phys. Rev. B Rapid Com
Why holes are not like electrons. II. The role of the electron-ion interaction
In recent work, we discussed the difference between electrons and holes in
energy band in solids from a many-particle point of view, originating in the
electron-electron interaction, and argued that it has fundamental consequences
for superconductivity. Here we discuss the fact that there is also a
fundamental difference between electrons and holes already at the single
particle level, arising from the electron-ion interaction. The difference
between electrons and holes due to this effect parallels the difference due to
electron-electron interactions: {\it holes are more dressed than electrons}. We
propose that superconductivity originates in 'undressing' of carriers from
electron-electron and electron-ion interactions, and that both aspects
of undressing have observable consequences.Comment: Continuation of Phys.Rev.B65, 184502 (2002) = cond-mat/0109385 (2001
Superconductivity in an exactly solvable Hubbard model with bond-charge interaction
The Hubbard model with an additional bond-charge interaction is solved
exactly in one dimension for the case where is the hopping amplitude.
In this case the number of doubly occupied sites is conserved. In the sector
with no double occupations the model reduces to the Hubbard model.
In arbitrary dimensions the qualitative form of the phase diagram is obtained.
It is shown that for moderate Hubbard interactions the model has
superconducting ground states.Comment: Revtex, 14 pages, 1 figure (uuencoded compressed tar-file
Density Matrix Renormalization Group Study of One-Dimensional Acoustic Phonons
We study the application of the density matrix renormalization group (DMRG)
to systems with one-dimensional acoustic phonons. We show how the use of a
local oscillator basis circumvents the difficulties with the long-range
interactions generated in real space using the normal phonon basis. When
applied to a harmonic atomic chain, we find excellent agreement with the exact
solution even when using a modest number of oscillator and block states (a few
times ten). We discuss the use of this algorithm in more complex cases and
point out its value when other techniques are deficient.Comment: 12 pages. To be published in PRB rapid co
Neutrino oscillation constraints on neutrinoless double beta decay
We have studied the constraints imposed by the results of neutrino
oscillation experiments on the effective Majorana mass || that characterizes
the contribution of Majorana neutrino masses to the matrix element of
neutrinoless double-beta decay. We have shown that in a general scheme with
three Majorana neutrinos and a hierarchy of neutrino masses (which can be
explained by the see-saw mechanism), the results of neutrino oscillation
experiments imply rather strong constraints on the parameter ||. From the
results of the first reactor long-baseline experiment CHOOZ and the Bugey
experiment it follows that || < 3x10^{-2} eV if the largest mass-squared
difference is smaller than 2 eV^2. Hence, we conclude that the observation of
neutrinoless double-beta decay with a probability that corresponds to || >
10^{-1} eV would be a signal for a non-hierarchical neutrino mass spectrum
and/or non-standard mechanisms of lepton number violation.Comment: 20 pages, including 4 figure
Temperature effects on dislocation core energies in silicon and germanium
Temperature effects on the energetics of the 90-degree partial dislocation in
silicon and germanium are investigated, using non-equilibrium methods to
estimate free energies, coupled with Monte Carlo simulations. Atomic
interactions are described by Tersoff and EDIP interatomic potentials. Our
results indicate that the vibrational entropy has the effect of increasing the
difference in free energy between the two possible reconstructions of the
90-degree partial, namely, the single-period and the double-period geometries.
This effect further increases the energetic stability of the double-period
reconstruction at high temperatures. The results also indicate that anharmonic
effects may play an important role in determining the structural properties of
these defects in the high-temperature regime.Comment: 8 pages in two-column physical-review format with six figure
Exact ground states for the four-electron problem in a two-dimensional finite Hubbard square system
We present exact explicit analytical results describing the exact ground
state of four electrons in a two dimensional square Hubbard cluster containing
16 sites taken with periodic boundary conditions. The presented procedure,
which works for arbitrary even particle number and lattice sites, is based on
explicitly given symmetry adapted base vectors constructed in r-space. The
Hamiltonian acting on these states generates a closed system of 85 linear
equations providing by its minimum eigenvalue the exact ground state of the
system. The presented results, described with the aim to generate further
creative developments, not only show how the ground state can be exactly
obtained and what kind of contributions enter in its construction, but
emphasize further characteristics of the spectrum. On this line i) possible
explications are found regarding why weak coupling expansions often provide a
good approximation for the Hubbard model at intermediate couplings, or ii)
explicitly given low lying energy states of the kinetic energy, avoiding double
occupancy, suggest new roots for pairing mechanism attracting decrease in the
kinetic energy, as emphasized by kinetic energy driven superconductivity
theories.Comment: 37 pages, 18 figure
Ab Initio Study of Screw Dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals
We report the first ab initio density-functional study of screw
dislocations cores in the bcc transition metals Mo and Ta. Our results suggest
a new picture of bcc plasticity with symmetric and compact dislocation cores,
contrary to the presently accepted picture based on continuum and interatomic
potentials. Core energy scales in this new picture are in much better agreement
with the Peierls energy barriers to dislocation motion suggested by
experiments.Comment: 3 figures, 3 table
- …