1,663 research outputs found

    The Oblique Corrections from Heavy Scalars in Irreducible Representations

    Full text link
    The contributions to SS, TT, and UU from heavy scalars in any irreducible representation of the electroweak gauge group SU(2)L×U(1)YSU(2)_L\times U(1)_Y are obtained. We find that in the case of a heavy scalar doublet there is a slight difference between the SS parameter we have obtained and that in previous works.Comment: 6 pages, 2 axodraw figures; minor changes, references update

    Triaxially deformed relativistic point-coupling model for Λ\Lambda hypernuclei: a quantitative analysis of hyperon impurity effect on nuclear collective properties

    Full text link
    The impurity effect of hyperon on atomic nuclei has received a renewed interest in nuclear physics since the first experimental observation of appreciable reduction of E2E2 transition strength in low-lying states of hypernucleus Λ7^{7}_\LambdaLi. Many more data on low-lying states of Λ\Lambda hypernuclei will be measured soon for sdsd-shell nuclei, providing good opportunities to study the Λ\Lambda impurity effect on nuclear low-energy excitations. We carry out a quantitative analysis of Λ\Lambda hyperon impurity effect on the low-lying states of sdsd-shell nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF), considering that the Λ\Lambda hyperon is injected into the lowest positive-parity (Λs\Lambda_s) and negative-parity (Λp\Lambda_p) states. We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the Λ\Lambda binding energies of hypernuclei as well as the potential energy surfaces (PESs) in (β,γ)(\beta, \gamma) deformation plane. We also calculate the PESs for the Λ\Lambda hypernuclei with good quantum numbers using a microscopic particle rotor model (PRM) with the same relativistic EDF. The triaxially deformed RMF approach is further applied in order to determine the parameters of a five-dimensional collective Hamiltonian (5DCH) for the collective excitations of triaxially deformed core nuclei. Taking Λ25,27^{25,27}_{\Lambda}Mg and Λ31^{31}_{\Lambda}Si as examples, we analyse the impurity effects of Λs\Lambda_s and Λp\Lambda_p on the low-lying states of the core nuclei...Comment: 15 pages with 18 figures and 1 table (version to be published in Physical Review C

    Symmetry of Dirac Equation and Corresponding Phenomenology

    Full text link
    It has been suggested that the high symmetries in the Schr\"odinger equation with the Coulomb or harmonic oscillator potentials may remain in the corresponding relativistic Dirac equation. If the principle is correct, in the Dirac equation the potential should have a form as (1+β)2V(r){(1+\beta)\over 2}V(r) where V(r)V(r) is −e2r{-e^2\over r} for hydrogen atom and κr2\kappa r^2 for harmonic oscillator. However, in the case of hydrogen atom, by this combination the spin-orbit coupling term would not exist and it is inconsistent with the observational spectra of hydrogen atom, so that the symmetry of SO(4) must reduce into SU(2). The governing mechanisms QED and QCD which induce potential are vector-like theories, so at the leading order only vector potential exists. However, the higher order effects may cause a scalar fraction. In this work, we show that for QED, the symmetry restoration is very small and some discussions on the symmetry breaking are made. At the end, we briefly discuss the QCD case and indicate that the situation for QCD is much more complicated and interesting.Comment: 15pages, 3 figures, accepted by International Journal of Modern Physics

    Neutrino decay as a possible interpretation to the MiniBooNE observation with unparticle scenario

    Full text link
    In a new measurement on neutrino oscillation νμ→νe\nu_{\mu}\to\nu_e, the MiniBooNE Collaboration observes an excess of electron-like events at low energy and the phenomenon may demand an explanation which obviously is beyond the oscillation picuture. We propose that heavier neutrino ν2\nu_2 decaying into a lighter one ν1\nu_1 via the transition process νμ→νe+X\nu_{\mu}\to \nu_e+X where XX denotes any light products, could be a natural mechanism. The theoretical model we employ here is the unparticle scenario established by Georgi. We have studied two particular modes \nu_\mu\to \nu_e+\Un and νμ→νe+νˉe+νe\nu_\mu\to \nu_e+\bar\nu_e+\nu_e. Unfortunately, the number coming out from the computation is too small to explain the observation. Moreover, our results are consistent with the cosmology constraint on the neutrino lifetime and the theoretical estimation made by other groups, therefore we can conclude that even though neutrino decay seems plausible in this case, it indeed cannot be the source of the peak at lower energy observed by the MiniBooNE collaboration and there should be other mechanisms responsible for the phenomenon.Comment: 14 pages, conclusions are changed; published version for EPJ

    Thermal Unparticles: A New Form of Energy Density in the Universe

    Full text link
    Unparticle \U with scaling dimension d_\U has peculiar thermal properties due to its unique phase space structure. We find that the equation of state parameter \omega_\U, the ratio of pressure to energy density, is given by 1/(2d_\U +1) providing a new form of energy in our universe. In an expanding universe, the unparticle energy density \rho_\U(T) evolves dramatically differently from that for photons. For d_\U >1, even if \rho_\U(T_D) at a high decoupling temperature TDT_D is very small, it is possible to have a large relic density \rho_\U(T^0_\gamma) at present photon temperature Tγ0T^0_\gamma, large enough to play the role of dark matter. We calculate TDT_D and \rho_\U(T^0_\gamma) using photon-unparticle interactions for illustration.Comment: 5 pages; v3, journal version

    Restudy on Dark Matter Time-Evolution in the Littlest Higgs model with T-parity

    Full text link
    Following previous study, in the Littlest Higgs model (LHM), the heavy photon is supposed to be a possible dark matter candidate and its relic abundance of the heavy photon is estimated in terms of the Boltzman-Lee-Weinberg time-evolution equation. The effects of the T-parity violation is also considered. Our calculations show that when Higgs mass MHM_H taken to be 300 GeV and don't consider T-parity violation, only two narrow ranges 133<MAH<135133<M_{A_{H}}<135 GeV and 167<MAH<169167<M_{A_{H}}<169 GeV are tolerable with the current astrophysical observation and if 135<MAH<167135<M_{A_{H}}<167 GeV, there must at least exist another species of heavy particle contributing to the cold dark matter. As long as the T-parity can be violated, the heavy photon can decay into regular standard model particles and would affect the dark matter abundance in the universe, we discuss the constraint on the T-parity violation parameter based on the present data. Direct detection prospects are also discussed in some detail.Comment: 13 pages, 11 figures include

    Reducing the communication complexity with quantum entanglement

    Full text link
    We propose a probabilistic two-party communication complexity scenario with a prior nonmaximally entangled state, which results in less communication than that is required with only classical random correlations. A simple all-optical implementation of this protocol is presented and demonstrates our conclusion.Comment: 4 Pages, 2 Figure

    Skin transcriptome profiles associated with coat color in sheep

    Get PDF
    Background Previous molecular genetic studies of physiology and pigmentation of sheep skin have focused primarily on a limited number of genes and proteins. To identify additional genes that may play important roles in coat color regulation, Illumina sequencing technology was used to catalog global gene expression profiles in skin of sheep with white versus black coat color. Results There were 90,006 and 74,533 unigenes assembled from the reads obtained from white and black sheep skin, respectively. Genes encoding for the ribosomal proteins and keratin associated proteins were most highly expressed. A total of 2,235 known genes were differentially expressed in black versus white sheep skin, with 479 genes up-regulated and 1,756 genes down-regulated. A total of 845 novel genes were differentially expressed in black versus white sheep skin, consisting of 107 genes which were up-regulated (including 2 highly expressed genes exclusively expressed in black sheep skin) and 738 genes that were down-regulated. There was also a total of 49 known coat color genes expressed in sheep skin, from which 13 genes showed higher expression in black sheep skin. Many of these up-regulated genes, such as DCT, MATP, TYR and TYRP1, are members of the components of melanosomes and their precursor ontology category. Conclusion The white and black sheep skin transcriptome profiles obtained provide a valuable resource for future research to understand the network of gene expression controlling skin physiology and melanogenesis in sheep

    A possible signature of new physics at BES-III

    Full text link
    The recent observations of the purely leptonic decay \Ds \to \mu^+ \nu_{\mu} and τ+ντ\tau^+\nu_{\tau} at CLEO-c and BB factory may allow a possible contribution from a charged Higgs boson. One such measurement of the decay constant fDsf_{D_s} differs from the most precise unquenched lattice QCD calculation by 4 σ\sigma level. Meanwhile, the measured ratio, {\cal BR}(\Ds \to \mu^+ \nu_{\mu}) / {\cal BR}(\Dp \to \mu^+ \nu_{\mu}), is larger than the standard model prediction at 2.0σ\sigma level. We discuss that the precise measurement of the ratio {\cal BR}(\Ds \to \mu^+ \nu_{\mu}) / {\cal BR}(\Dp \to \mu^+ \nu_{\mu}) at BES-III will shed light on the presence of new intermediate particles by comparing the theoretical predictions, especially, the predictions of high precise unquenched lattice QCD calculation.Comment: 5 pages, 3 figures, mini-review, accepted by Chinese Physics C (HEP & NP
    • …
    corecore