32,785 research outputs found
The structure and magnetism of graphone
Graphone is a half-hydrogenated graphene. The structure of graphone is
illustrated as trigonal adsorption of hydrogen atoms on graphene at first.
However, we found the trigonal adsorption is unstable. We present an
illustration in detail to explain how a trigonal adsorption geometry evolves
into a rectangular adsorption geometry. We check the change of magnetism during
the evolution of geometry by evaluating the spin polarization of the
intermediate geometries. We prove and clarify that the rectangular adsorption
of hydrogen atoms on graphene is the most stable geometry of graphone and
graphone is actually antiferromagnetic.Comment: 11 pages, 4 figure
Recommended from our members
Assessing the effects of technological progress on energy efficiency in the construction industry: A case of China
Energy-saving technologies in buildings have received great attention from energy efficiency researchers in the construction sector. Traditional research tends to focus on the energy used during building operation and in construction materials production, but it usually neglects the energy consumed in the building construction process. Very few studies have explored the impacts of technological progress on energy efficiency in the construction industry. This paper presents a model of the building construction process based on Cobb-Douglas production function. The model estimates the effects of technological progress on energy efficiency with the objective to examine the role that technological progress plays in energy savings in China's construction industry. The modeling results indicated that technological progress improved energy efficiency by an average of 7.1% per year from 1997 to 2014. Furthermore, three main technological progress factors (the efficiency of machinery and equipment, the proportion change of the energy structure, and research and development investment) were selected to analyze their effects on energy efficiency improvement. These positive effects were verified, and results show the effects of first two factors are significant. Finally, recommendations for promoting energy efficiency in the construction industry are proposed
China's energy consumption in the building sector: A Statistical Yearbook-Energy Balance Sheet based splitting method
China's energy consumption in the building sector (BEC) is not counted as a separate type of energy consumption, but divided and mixed in other sectors in China's statistical system. This led to the lack of historical data on China's BEC. Moreover, previous researches' shortages such as unsystematic research on BEC, various estimation methods with complex calculation process, and difficulties in data acquisition resulted in “heterogeneous” of current BEC in China. Aiming to these deficiencies, this study proposes a set of China building energy consumption calculation method (CBECM) by splitting out the building related energy consumption mixed in other sectors in the composition of China Statistical Yearbook-Energy Balance Sheet. Then, China's BEC from 2000 to 2014 are estimated using CBECM and compared with other studies. Results show that, from 2000 to 2014, China's BEC increased 1.7 times, rising from 301 to 814 million tons of standard coal consumed, with the BEC percentage of total energy consumption stayed relatively stable between 17.7% and 20.3%. By comparison, we find that our results are reliable and the CBECM has the following advantages over other methods: data source is authoritative, calculation process is concise, and it is easy to obtain time series data on BEC etc. The CBECM is particularly suitable for the provincial government to calculate the local BEC, even in the circumstance with statistical yearbook available only
Recommended from our members
Fighting coal — Effectiveness of coal-replacement programs for residential heating in China: Empirical findings from a household survey
Household fuel substitution has been a crucial step for controlling air pollution in China, but the performance evaluation of household fuel substitution policies is overlooked. This study capitalized on the opportunity to use data collected during the household coal-replacement program in North China to evaluate the effect of a mandatory policy on fuel substitution at the micro-level. The results indicate that there is a significant effect of the coal-replacement program on fuel substitution, as we expected. The coal-to-electricity policy is effective in achieving the goal of a clean winter but not a warm winter due to the decline of delivered energy, while the high-quality coal replacement policy results in better performance in delivered energy but no improvement in indoor air quality. It is recommended to prioritize supporting measures on both the supply and demand sides before implementation, along with undertaking differential measures during the implementation phase to better address energy inequality
Recommended from our members
Effect factors of part-load performance for various Organic Rankine cycles using in engine waste heat recovery
The Organic Rankine Cycle (ORC) is regarded as one of the most promising waste heat recovery technologies for electricity generation engines. Since the engine usually operates under different working conditions, it is important to research the part-load performance of the ORC. In order to reveal the effect factors of part-load performance, four different forms of ORCs are compared in the study with dynamic math models established in SIMULINK. They are the ORC applying low temperature working fluid R245fa with a medium heat transfer cycle, the ORCs with high temperature working fluid toluene heated directly by exhaust condensing at low pressure and high pressure, and the double-stage ORC. It is regarded that the more slowly the system output power decreases, the better part-load performance it has. Based on a comparison among the four systems, the effects of evaporating pressure, condensing condition, working fluid, and system structure on part-load performance are revealed in the work. Further, it is found that the system which best matches with the heat source not only performs well under the design conditions, but also has excellent part-load performance
The topological system with a twisting edge band: position-dependent Hall resistance
We study a topological system with one twisting edge-state band and
one normal edge-state band. For the twisting edge-state band, Fermi energy goes
through the band three times, thus, having three edge states on one side of the
sample; while the normal edge band contributes only one edge state on the other
side of the sample. In such a system, we show that it consists of both
topologically protected and unprotected edge states, and as a consequence, its
Hall resistance depends on the location where the Hall measurement is done even
for a translationally invariant system. This unique property is absent in a
normal topological insulator
- …