12,856 research outputs found

    Coy v. Iowa: Reconciling a Defendant\u27s Right to Confrontation with a Child-Witness\u27 Interest in Avoiding Undue Psychological Trauma

    Get PDF

    Symmetry groupoids and patterns of synchrony in coupled cell networks

    Get PDF
    A coupled cell system is a network of dynamical systems, or “cells,” coupled together. Such systems can be represented schematically by a directed graph whose nodes correspond to cells and whose edges represent couplings. A symmetry of a coupled cell system is a permutation of the cells that preserves all internal dynamics and all couplings. Symmetry can lead to patterns of synchronized cells, rotating waves, multirhythms, and synchronized chaos. We ask whether symmetry is the only mechanism that can create such states in a coupled cell system and show that it is not. The key idea is to replace the symmetry group by the symmetry groupoid, which encodes information about the input sets of cells. (The input set of a cell consists of that cell and all cells connected to that cell.) The admissible vector fields for a given graph—the dynamical systems with the corresponding internal dynamics and couplings—are precisely those that are equivariant under the symmetry groupoid. A pattern of synchrony is “robust” if it arises for all admissible vector fields. The first main result shows that robust patterns of synchrony (invariance of “polydiagonal” subspaces under all admissible vector fields) are equivalent to the combinatorial condition that an equivalence relation on cells is “balanced.” The second main result shows that admissible vector fields restricted to polydiagonal subspaces are themselves admissible vector fields for a new coupled cell network, the “quotient network.” The existence of quotient networks has surprising implications for synchronous dynamics in coupled cell systems

    Determination of antimicrobial susceptibilities on infected urines without isolation

    Get PDF
    A method is described for the quick determination of the susceptibilities of various unidentified bacteria contained in an aqueous physiological fluid sample, particularly urine, to one or more antibiotics. A bacterial adenosine triphosphate (ATP) assay is carried out after the elimination of non-bacterial ATP to determine whether an infection exists. If an infection does exist, a portion of the sample is further processed, including subjecting parts of the portion to one or more antibiotics. Growth of the bacteria in the parts are determined, again by an ATP assay, to determine whether the unidentified bacteria in the sample are susceptible to the antibiotic or antibiotics under test

    Some Air Oxidation Products of DI-2-Ethylhexyl Sebacate

    Get PDF
    Author Institution: Department of Chemistry, The Ohio State University, Columbus 1

    Excitation Thresholds for Nonlinear Localized Modes on Lattices

    Full text link
    Breathers are spatially localized and time periodic solutions of extended Hamiltonian dynamical systems. In this paper we study excitation thresholds for (nonlinearly dynamically stable) ground state breather or standing wave solutions for networks of coupled nonlinear oscillators and wave equations of nonlinear Schr\"odinger (NLS) type. Excitation thresholds are rigorously characterized by variational methods. The excitation threshold is related to the optimal (best) constant in a class of discr ete interpolation inequalities related to the Hamiltonian energy. We establish a precise connection among dd, the dimensionality of the lattice, 2σ+12\sigma+1, the degree of the nonlinearity and the existence of an excitation threshold for discrete nonlinear Schr\"odinger systems (DNLS). We prove that if σ2/d\sigma\ge 2/d, then ground state standing waves exist if and only if the total power is larger than some strictly positive threshold, νthresh(σ,d)\nu_{thresh}(\sigma, d). This proves a conjecture of Flach, Kaldko& MacKay in the context of DNLS. We also discuss upper and lower bounds for excitation thresholds for ground states of coupled systems of NLS equations, which arise in the modeling of pulse propagation in coupled arrays of optical fibers.Comment: To appear in Nonlinearit
    corecore