1,131 research outputs found
An Algorithmic Test for Diagonalizability of Finite-Dimensional PT-Invariant Systems
A non-Hermitean operator does not necessarily have a complete set of
eigenstates, contrary to a Hermitean one. An algorithm is presented which
allows one to decide whether the eigenstates of a given PT-invariant operator
on a finite-dimensional space are complete or not. In other words, the
algorithm checks whether a given PT-symmetric matrix is diagonalizable. The
procedure neither requires to calculate any single eigenvalue nor any numerical
approximation.Comment: 13 pages, 1 figur
A quantum search for zeros of polynomials
A quantum mechanical search procedure to determine the real zeros of a polynomial is introduced. It is based on the construction of a spin observable whose eigenvalues coincide with the zeros of the polynomial. Subsequent quantum mechanical measurements of the observable output directly the numerical values of the zeros. Performing the measurements is the only computational resource involved
Quantum diagonalization of Hermitean matrices
To measure an observable of a quantum mechanical system leaves it in one of its eigenstates and the result of the measurement is one of its eigenvalues. This process is shown to be a computational resource: Hermitean (N ×N) matrices can be diagonalized, in principle, by performing appropriate quantum mechanical measurements. To do so, one considers the given matrix as an observable of a single spin with appropriate length s which can be measured using a generalized Stern-Gerlach apparatus. Then, each run provides one eigenvalue of the observable. As the underlying working principle is the `collapse of the wavefunction' associated with a measurement, the procedure is neither a digital nor an analogue calculation - it defines thus a new example of a quantum mechanical method of computation
How to determine a quantum state by measurements: The Pauli problem for a particle with arbitrary potential
The problem of reconstructing a pure quantum state ¿¿> from measurable quantities is considered for a particle moving in a one-dimensional potential V(x). Suppose that the position probability distribution ¿¿(x,t)¿2 has been measured at time t, and let it have M nodes. It is shown that after measuring the time evolved distribution at a short-time interval ¿t later, ¿¿(x,t+¿t)¿2, the set of wave functions compatible with these distributions is given by a smooth manifold M in Hilbert space. The manifold M is isomorphic to an M-dimensional torus, TM. Finally, M additional expectation values of appropriately chosen nonlocal operators fix the quantum state uniquely. The method used here is the analog of an approach that has been applied successfully to the corresponding problem for a spin system
Quantum correlation games
A new approach to play games quantum mechanically is proposed. We consider two players who perform measurements in an EPR-type setting. The payoff relations are defined as functions of correlations, i.e. without reference to classical or quantum mechanics. Classical bi-matrix games are reproduced if the input states are classical and perfectly anti-correlated, that is, for a classical correlation game. However, for a quantum correlation game, with an entangled singlet state as input, qualitatively different solutions are obtained. For example, the Prisoners' Dilemma acquires a Nash equilibrium if both players apply a mixed strategy. It appears to be conceptually impossible to reproduce the properties of quantum correlation games within the framework of classical games
Reconstruction of the spin state
System of 1/2 spin particles is observed repeatedly using Stern-Gerlach
apparatuses with rotated orientations. Synthesis of such non-commuting
observables is analyzed using maximum likelihood estimation as an example of
quantum state reconstruction. Repeated incompatible observations represent a
new generalized measurement. This idealized scheme will serve for analysis of
future experiments in neutron and quantum optics.Comment: 4 pages, 1 figur
Small denominators, frequency operators, and Lie transforms for nearly integrable quantum spin systems
Based on the previously proposed notions of action operators and of quantum integrability, frequency operators are introduced in a fully quantum-mechanical setting. They are conceptually useful because another formulation can be given to unitary perturbation theory. When worked out for quantum spin systems, this variant is found to be formally equivalent to canonical perturbation theory applied to nearly integrable systems consisting of classical spins. In particular, it becomes possible to locate the quantum-mechanical operator-valued equivalent of the frequency denominators that may cause divergence of the classical perturbation series. The results that are established here link the concept of quantum-mechanical integrability to a technical question, namely, the behavior of specific perturbation series
Structure of nonlinear gauge transformations
Nonlinear Doebner-Goldin [Phys. Rev. A 54, 3764 (1996)] gauge transformations
(NGT) defined in terms of a wave function do not form a group. To get
a group property one has to consider transformations that act differently on
different branches of the complex argument function and the knowledge of the
value of is not sufficient for a well defined NGT. NGT that are well
defined in terms of form a semigroup parametrized by a real number
and a nonzero which is either an integer or . An extension of NGT to projectors and general density matrices
leads to NGT with complex . Both linearity of evolution and Hermiticity
of density matrices are gauge dependent properties.Comment: Final version, to be published in Phys.Rev.A (Rapid Communication),
April 199
Discrete Moyal-type representations for a spin
In Moyal’s formulation of quantum mechanics, a quantum spin s is described in terms of continuous symbols, i.e., by smooth functions on a two-dimensional sphere. Such prescriptions to associate operators with Wigner functions, P or Q symbols, are conveniently expressed in terms of operator kernels satisfying the Stratonovich-Weyl postulates. In analogy to this approach, a discrete Moyal formalism is defined on the basis of a modified set of postulates. It is shown that appropriately modified postulates single out a well-defined set of kernels that give rise to discrete symbols. Now operators are represented by functions taking values on (2s+1)2 points of the sphere. The discrete symbols contain no redundant information, contrary to the continuous ones. The properties of the resulting discrete Moyal formalism for a quantum spin are worked out in detail and compared to the continuous formalism
- …