540 research outputs found

    PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation

    Get PDF
    Poly ADP-ribose polymerase (PARP) is a protein involved in single strand break repair. Recently, PARP inhibitors have shown considerable promise in the treatment of several cancers, both in monotherapy and in combination with cytotoxic agents. Synthetic lethal action of PARP inhibitors has been observed in tumors with mutations in double strand break repair pathways. In addition, PARP inhibition potentially enhances sensitivity of tumor cells to DNA damaging agents, including radiotherapy. Aim of this study is to determine the radiosensitizing properties of the PARP inhibitor Olaparib in childhood medulloblastoma, ependymoma and high grade glioma (HGG). Increased PARP1 expression was observed in medulloblastoma, ependymoma and HGG, as compared to non-neoplastic brain tissue. Pediatric high grade glioma, medulloblastoma and ependymoma gene expression profiling revealed that high PARP1 expression is associated with poor prognosis. Cell growth inhibition assays with Olaparib resulted in differential sensitivity, with IC50 values ranging from 1.4 to 8.4 μM, irrespective of tumor type and PARP1 protein expression. Sensitization to radiation was observed in medulloblastoma, ependymoma and HGG cell lines with subcytotoxic concentrations of Olaparib, which coincided with persistence of double strand breaks. Combining PARP inhibitors with radiotherapy in clinical studies in childhood high grade brain tumors may improve therapeutic outcome

    Parental effects on early life history traits of haddock Melanogrammus aeglefinus

    Get PDF
    Gametes from five male and three female haddock ( Melanogrammus aeglefinus ) were crossed to produce 15 half-sibling families that were used to evaluate potential parental contributions to early life history variability. Larval morphology at 0 and 5 days post-hatch (dph) and time to starvation in the absence of food were examined. Maternal influences on larval standard length and yolk area were significant at 0 and 5 dph. Paternal effects on larval standard length were significant at 0 and 5 dph, whereas paternal effects on yolk area were only significant at 5 dph. Larval eye diameter was influenced by maternity at day 0 post-hatch and by both maternity and paternity at 5 dph. Myotome height of larvae was subject to maternal and paternal influences at 0 and 5 dph. Growth rate was significantly influenced by both paternity and maternity. Yolk utilization efficiency was significantly influenced by parental interaction, while the time taken for larvae to die in the absence of food was affected only by maternity. Results of this study not only confirm the importance of female contributions to larval development but also indicate a paternal influence on the development and the early life history success of marine fish

    A Mutation in Myo15 Leads to Usher-Like Symptoms in LEW/Ztm-ci2 Rats

    Get PDF
    The LEW/Ztm-ci2 rat is an animal model for syndromal deafness that arose from a spontaneous mutation. Homozygous animals show locomotor abnormalities like lateralized circling behavior. Additionally, an impaired vision can be observed in some animals through behavioral studies. Syndromal deafness as well as retinal degeneration are features of the Usher syndrome in humans. In the present study, the mutation was identified as a base substitution (T->C) in exon 56 of Myo15, leading to an amino acid exchange from leucine (Leu) to proline (Pro) within the carboxy-terminal MyTH4 domain in the proteins' tail region. Myo15 mRNA was expressed in the retina as demonstrated for the first time with the help of in-situ hybridization and PCR. To characterize the visual phenotype, rats were examined by scotopic and photopic electroretinography and, additionally, histological analyses of the retinas were conducted. The complete loss of sight was detected along with a severe degeneration of photoreceptor cells. Interestingly, the manifestation of the disease does not solely depend on the mutation, but also on environmental factors. Since the LEW/Ztm-ci2 rat features the entire range of symptoms of the human Usher syndrome we think that this strain is an appropriate model for this disease. Our findings display that mutations in binding domains of myosin XV do not only cause non-syndromic hearing loss but can also lead to syndromic disorders including retinal dysfunction

    Radiosensitizing potential of the selective cyclooygenase-2 (COX-2) inhibitor meloxicam on human glioma cells

    Get PDF
    The COX-2 protein is frequently overexpressed in human malignant gliomas. This expression has been associated with their aggressive growth characteristics and poor prognosis for patients. Targeting the COX-2 pathway might improve glioma therapy. In this study, the effects of the selective COX-2 inhibitor meloxicam alone and in combination with irradiation were investigated on human glioma cells in vitro. A panel of three glioma cell lines (D384, U87 and U251) was used in the experiments from which U87 cells expressed constitutive COX-2. The response to meloxicam and irradiation (dose-range of 0–6 Gy) was determined by the clonogenic assay, cell proliferation was evaluated by growth analysis and cell cycle distribution by FACS. 24–72 h exposure to 250–750 μM meloxicam resulted in a time and dose dependent growth inhibition with an almost complete inhibition after 24 h for all cell lines. Exposure to 750 μM meloxicam for 24 h increased the fraction of cells in the radiosensitive G2/M cell cycle phase in D384 (18–27%) and U251 (17–41%) cells. 750 μM meloxicam resulted in radiosensitization of D384 (DMF:2.19) and U87 (DMF:1.25) cells, but not U251 cells (DMF:1.08). The selective COX-2 inhibitor meloxicam exerted COX-2 independent growth inhibition and radiosensitization of human glioma cells

    Coupling Optical and Electrical Measurements in Artificial Membranes: Lateral Diffusion of Lipids and Channel Forming Peptides in Planar Bilayers

    Get PDF
    Planar lipid bilayers (PLB) were prepared by the Montal-Mueller technique in a FRAP system designed to simultaneously measure conductivity across, and lateral diffusion of, the bilayer. In the first stage of the project the FRAP system was used to characterise the lateral dynamics of bilayer lipids with regards to phospholipid composition (headgroup, chain unsaturation etc.), presence of cholesterol and the effect of divalent cations on negatively-charged bilayers. In the second stage of the project, lateral diffusion of two fluorescently-labelled voltage-dependent pore-forming peptides (alamethicin and S4s from Shaker K(+) channel) was determined at rest and in the conducting state. This study demonstrates the feasibility of such experiments with PLBs, amenable to physical constraints, and thus offers new opportunities for systematic studies of structure-function relationships in membrane-associating molecules

    Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide

    Get PDF
    The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) can cause resistance to the alkylating drug temozolomide (TMZ). The purpose of this study was to determine the relationship between the MGMT status, determined by means of several techniques and methods, and the cytotoxic response to TMZ in 11 glioblastoma multiforme (GBM) cell lines and 5 human tumour cell lines of other origins. Cell survival was analysed by clonogenic assay. The MGMT protein levels were assessed by western blot analysis. The MGMT promoter methylation levels were determined using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and quantitative real-time methylation-specific PCR (qMSP). On the basis of the results of these techniques, six GBM cell lines were selected and subjected to bisulphite sequencing. The MGMT protein was detected in all TMZ-resistant cell lines, whereas no MGMT protein could be detected in cell lines that were TMZ sensitive. The MS-MLPA results were able to predict TMZ sensitivity in 9 out of 16 cell lines (56%). The qMSP results matched well with TMZ sensitivity in 11 out of 12 (92%) glioma cell lines. In addition, methylation as detected by bisulphite sequencing seemed to be predictive of TMZ sensitivity in all six cell lines analysed (100%). The MGMT protein expression more than MGMT promoter methylation status predicts the response to TMZ in human tumour cell line
    corecore