318 research outputs found

    Child-Patient Perspective on Results after Correction of Sagittal Synostosis and the Difference between Child-Patient and Parent's Perspectives

    Get PDF
    Objective: This study assesses the level of child-patient satisfaction with the surgical result after scaphocephaly correction and the difference between child-patient and parents' perspectives. Methods: A questionnaire was sent out to children between 6 and 18 years old with isolated sagittal synostosis, who had undergone either a frontobiparietal remodeling or extended strip craniotomy, and separately to their parents. Results: The questionnaire was completed by 96 patients, 81.2% of the patients considered their head to be similar or slightly different from others. Despite the majority being satisfied with the outcome, 33% would change the shape of their head if they could. Patients who underwent extended strip craniotomy wanted to change the back of their head more often (P = 0.002), whereas patients who underwent frontobiparietal remodeling wanted to change their forehead (P = 0.005). The patients' own perspective on head shape was independent of the cephalic index (CI). However, patients with a relatively narrow CI received more remarks from others about their heads (P = 0.038). Parent and child agreement was 49.7% on average. Differences between child-patients and parents were found in reporting adaptive behavior. Conclusion: The majority of patients were satisfied with the outcome of their intervention. The child's perspective seems to be a valuable addition to evaluate sagittal synostosis surgery as it is independent of the CI and differentiates between different surgical techniques. In addition, the patient's perspective is comparable to the parent's perspective, but gives more details on adaptive behavior.</p

    Child-Patient Perspective on Results after Correction of Sagittal Synostosis and the Difference between Child-Patient and Parent's Perspectives

    Get PDF
    Objective: This study assesses the level of child-patient satisfaction with the surgical result after scaphocephaly correction and the difference between child-patient and parents' perspectives. Methods: A questionnaire was sent out to children between 6 and 18 years old with isolated sagittal synostosis, who had undergone either a frontobiparietal remodeling or extended strip craniotomy, and separately to their parents. Results: The questionnaire was completed by 96 patients, 81.2% of the patients considered their head to be similar or slightly different from others. Despite the majority being satisfied with the outcome, 33% would change the shape of their head if they could. Patients who underwent extended strip craniotomy wanted to change the back of their head more often (P = 0.002), whereas patients who underwent frontobiparietal remodeling wanted to change their forehead (P = 0.005). The patients' own perspective on head shape was independent of the cephalic index (CI). However, patients with a relatively narrow CI received more remarks from others about their heads (P = 0.038). Parent and child agreement was 49.7% on average. Differences between child-patients and parents were found in reporting adaptive behavior. Conclusion: The majority of patients were satisfied with the outcome of their intervention. The child's perspective seems to be a valuable addition to evaluate sagittal synostosis surgery as it is independent of the CI and differentiates between different surgical techniques. In addition, the patient's perspective is comparable to the parent's perspective, but gives more details on adaptive behavior.</p

    Uranium (VI) Adsorbate Structures on Portlandite [Ca(OH)2] Type Surfaces Determined by Computational Modelling and X-ray Absorption Spectroscopy

    Get PDF
    Portlandite [Ca(OH)2] is a potentially dominant solid phase in the high pH fluids expected within the cementitious engineered barriers of Geological Disposal Facilities (GDF). This study combined X-ray Absorption Spectroscopy with computational modelling in order to provide atomic-scale data which improves our understanding of how a critically important radionuclide (U) will be adsorbed onto this phase under conditions relevant to a GDF environment. Such data are fundamental for predicting radionuclide mass transfer. Surface coordination chemistry and speciation of uranium with portlandite [Ca(OH)2] under alkaline groundwater conditions (ca. pH 12) were determined by both in situ and ex situ grazing incidence extended X-ray absorption fine structure analysis (EXAFS) and by computational modelling at the atomic level. Free energies of sorption of aqueous uranyl hydroxides, [UO2(OH)n]2–n (n = 0–5) with the (001), (100) and (203) or (101) surfaces of portlandite are predicted from the potential of mean force using classical molecular umbrella sampling simulation methods and the structural interactions are further explored using fully periodic density functional theory computations. Although uranyl is predicted to only weakly adsorb to the (001) and (100) clean surfaces, there should be significantly stronger interactions with the (203/101) surface or at hydroxyl vacancies, both prevalent under groundwater conditions. The uranyl surface complex is typically found to include four equatorially coordinated hydroxyl ligands, forming an inner-sphere sorbate by direct interaction of a uranyl oxygen with surface calcium ions in both the (001) and (203/101) cases. In contrast, on the (100) surface, uranyl is sorbed with its axis more parallel to the surface plane. The EXAFS data are largely consistent with a surface structural layer or film similar to calcium uranate, but also show distinct uranyl characteristics, with the uranyl ion exhibiting the classic dioxygenyl oxygens at 1.8 Å and between four and five equatorial oxygen atoms at distances between 2.28 and 2.35 Å from the central U absorber. These experimental data are wholly consistent with the adsorbate configuration predicted by the computational models. These findings suggest that, under the strongly alkaline conditions of a cementitious backfill engineered barrier, there would be significant uptake of uranyl by portlandite to inhibit the mobility of U(VI) from the near field of a geological disposal facility

    In Situ EXAFS Study of Sr Adsorption on TiO2(110) under High Ionic Strength Wastewater Conditions

    Get PDF
    In order to provide important details concerning the adsorption reactions of Sr, batch reactions and a set of both ex situ and in situ Grazing Incidence X-ray Absorption Fine Structure (GIXAFS) adsorption experiments were completed on powdered TiO2 and on rutile(110), both reacted with either SrCl2 or SrCO3 solutions. TiO2 sorption capacity for strontium (Sr) ranges from 550 ppm (SrCl2 solutions, second order kinetics) to 1400 ppm (SrCO3 solutions, first order kinetics), respectively, and is rapid. Sr adsorption decreased as a function of chloride concentration but significantly increased as carbonate concentrations increased. In the presence of carbonate, the ability of TiO2 to remove Sr from the solution increases by a factor of ~4 due to rapid epitaxial surface precipitation of an SrCO3 thin film, which registers itself on the rutile(110) surface as a strontianite-like phase (d-spacing 2.8 &Aring;). Extended X-ray Absorption Fine Structure (EXAFS) results suggest the initial attachment is via tetradental inner-sphere Sr adsorption. Moreover, adsorbates from concentrated SrCl2 solutions contain carbonate and hydroxyl species, which results in both inner- and outer-sphere adsorbates and explains the reduced Sr adsorption in these systems. These results not only provide new insights into Sr kinetics and adsorption on TiO2 but also provide valuable information concerning potential improvements in effluent water treatment models and are pertinent in developing treatment methods for rutile-coated structural materials within nuclear power plants

    The nonpolymorphic MHC Qa-1b mediates CD8+ T cell surveillance of antigen-processing defects

    Get PDF
    The nonclassical major histocompatibility complex (MHC) Qa-1b accommodates monomorphic leader peptides and functions as a ligand for germ line receptors CD94/NKG2, which are expressed by natural killer cells and CD8+ T cells. We here describe that the conserved peptides are replaced by a novel peptide repertoire of surprising diversity as a result of impairments in the antigen-processing pathway. This novel peptide repertoire represents immunogenic neoantigens for CD8+ T cells, as we found that these Qa-1b–restricted T cells dominantly participated in the response to tumors with processing deficiencies. A surprisingly wide spectrum of target cells, irrespective of transformation status, MHC background, or type of processing deficiency, was recognized by this T cell subset, complying with the conserved nature of Qa-1b. Target cell recognition depended on T cell receptor and Qa-1b interaction, and immunization with identified peptide epitopes demonstrated in vivo priming of CD8+ T cells. Our data reveal that Qa-1b, and most likely its human homologue human leukocyte antigen-E, is important for the defense against processing-deficient cells by displacing the monomorphic leader peptides, which relieves the inhibition through CD94/NKG2A on lymphocytes, and by presenting a novel repertoire of immunogenic peptides, which recruits a subset of cytotoxic CD8+ T cells

    What is the price of using the Price equation in ecology?

    Get PDF
    The Dialogue series is intended to promote critical thinking and the expression of contrasting or even opposing viewpoints on important ecological topics. Here, seven researchers debate the use of the Price equation, a framework that has long been used in evolution to analyze temporal changes in the frequency of traits and alleles. This Dialogue describes different philosophical and mathematical perspectives on the application of the Price equation to ecological questions such as the relationship between biodiversity and ecosystem functioning (BEF). The hope is that the broader scientific community will benefit from these contrasting viewpoints

    Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    Get PDF
    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms

    Uranium (VI) Adsorbate Structures on Portlandite [Ca(OH) 2 ] Type Surfaces Determined by Computational Modelling and X-ray Absorption Spectroscopy

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-11-03, pub-electronic 2021-11-08Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; Grant(s): EP/1036389/1Portlandite [Ca(OH)2] is a potentially dominant solid phase in the high pH fluids expected within the cementitious engineered barriers of Geological Disposal Facilities (GDF). This study combined X-ray Absorption Spectroscopy with computational modelling in order to provide atomic-scale data which improves our understanding of how a critically important radionuclide (U) will be adsorbed onto this phase under conditions relevant to a GDF environment. Such data are fundamental for predicting radionuclide mass transfer. Surface coordination chemistry and speciation of uranium with portlandite [Ca(OH)2] under alkaline groundwater conditions (ca. pH 12) were determined by both in situ and ex situ grazing incidence extended X-ray absorption fine structure analysis (EXAFS) and by computational modelling at the atomic level. Free energies of sorption of aqueous uranyl hydroxides, [UO2(OH)n]2–n (n = 0–5) with the (001), (100) and (203) or (101) surfaces of portlandite are predicted from the potential of mean force using classical molecular umbrella sampling simulation methods and the structural interactions are further explored using fully periodic density functional theory computations. Although uranyl is predicted to only weakly adsorb to the (001) and (100) clean surfaces, there should be significantly stronger interactions with the (203/101) surface or at hydroxyl vacancies, both prevalent under groundwater conditions. The uranyl surface complex is typically found to include four equatorially coordinated hydroxyl ligands, forming an inner-sphere sorbate by direct interaction of a uranyl oxygen with surface calcium ions in both the (001) and (203/101) cases. In contrast, on the (100) surface, uranyl is sorbed with its axis more parallel to the surface plane. The EXAFS data are largely consistent with a surface structural layer or film similar to calcium uranate, but also show distinct uranyl characteristics, with the uranyl ion exhibiting the classic dioxygenyl oxygens at 1.8 Å and between four and five equatorial oxygen atoms at distances between 2.28 and 2.35 Å from the central U absorber. These experimental data are wholly consistent with the adsorbate configuration predicted by the computational models. These findings suggest that, under the strongly alkaline conditions of a cementitious backfill engineered barrier, there would be significant uptake of uranyl by portlandite to inhibit the mobility of U(VI) from the near field of a geological disposal facility
    corecore