8 research outputs found

    Genome-wide chromosomal association of Upf1 is linked to Pol II transcription in Schizosaccharomyces pombe

    Get PDF
    Although the RNA helicase Upf1 has hitherto been examined mostly in relation to its cytoplasmic role in nonsense mediated mRNA decay (NMD), here we report high-throughput ChIP data indicating genome-wide association of Upf1 with active genes in Schizosaccharomyces pombe. This association is RNase sensitive, correlates with Pol II transcription and mRNA expression levels. Changes in Pol II occupancy were detected in a Upf1 deficient (upf1∆) strain, prevalently at genes showing a high Upf1 relative to Pol II association in wild-type. Additionally, an increased Ser2 Pol II signal was detected at all highly transcribed genes examined by ChIP-qPCR. Furthermore, upf1cells are hypersensitive to the transcription elongation inhibitor 6-azauracil. A significant proportion of the genes associated with Upf1 in wild-type conditions are also mis-regulated in upf1. These data envisage that by operating on the nascent transcript, Upf1 might influence Pol II phosphorylation and transcription

    The N-terminus of Stag1 is required to repress the 2C program by maintaining rRNA expression and nucleolar integrity.

    No full text
    Our understanding of how STAG proteins contribute to cell identity and disease have largely been studied from the perspective of chromosome topology and protein-coding gene expression. Here, we show that STAG1 is the dominant paralog in mouse embryonic stem cells (mESCs) and is required for pluripotency. mESCs express a wide diversity of naturally occurring Stag1 isoforms, resulting in complex regulation of both the levels of STAG paralogs and the proportion of their unique terminal ends. Skewing the balance of these isoforms impacts cell identity. We define a novel role for STAG1, in particular its N-terminus, in regulating repeat expression, nucleolar integrity, and repression of the two-cell (2C) state to maintain mESC identity. Our results move beyond protein-coding gene regulation via chromatin loops to new roles for STAG1 in nucleolar structure and function, and offer fresh perspectives on how STAG proteins, known to be cancer targets, contribute to cell identity and disease

    Genome-wide chromosomal association of Upf1 is linked to Pol II transcription in <i>Schizosaccharomyces pombe</i>

    No full text
    Although the RNA helicase Upf1 has hitherto been examined mostly in relation to its cytoplasmic role in nonsense mediated mRNA decay (NMD), here we report high-throughput ChIP data indicating genome-wide association of Upf1 with active genes in Schizosaccharomyces pombe. This association is RNase sensitive and it correlates with Pol II transcription and mRNA expression levels. While changes in Pol II occupancy were detected at only some genes in a Upf1-deficient (upf1Δ) strain, there is an increased Ser2 Pol II signal at all highly transcribed genes examined by ChIP-qPCR. Furthermore, upf1Δ cells are hypersensitive to the transcription elongation inhibitor 6-azauracil and display Pol II abnormalities suggestive of Pol II hyperphosphorylation. A significant proportion of the genes associated with Upf1 in wild-type conditions are also mis-regulated in upf1Δ. These data envisage that by operating on the nascent transcript Upf1 might influence Pol II phosphorylation and transcription

    Upf proteins: highly conserved factors involved in nonsense mRNA mediated decay

    No full text
    corecore