1,248 research outputs found

    Acceleration of protons at 32 Jovian radii in the outer magnetosphere of jupiter

    Get PDF
    During the inbound pass of Pioneer 10, a rapid ten-fold increase of the 0.2 to MeV proton flux was observed at 32 Jovian radii (R sub J). The total event lasted for 30 minutes and was made up of a number of superimposed individual events. At the time, the spacecraft was in the outer magnetosphere about 7 R sub J below the magnetic equator. Before and after the event, the proton flux was characteristic of the low flux level normally encountered between crossings of the magnetic equator. Flux changes at different energies were coherent within 1 minute; a time comparable to the time resolution of the data. The angular distributions were highly anisotropic with protons streaming towards Jupiter. A field-aligned dumbbell distribution was observed initially, and a pancake distribution just before the flux decayed to its pre-event value. The alpha particle flux changed as rapidly as the proton flux but peaked at different times. The energetic electron flux behaved differently; it increased gradually throughout the period

    Energetic particles in the pre-dawn magnetotail of Jupiter

    Get PDF
    A detailed account is given of the energetic electron and proton populations as observed with Voyagers 1 and 2 during their passes through the dawn magnetotail of Jupiter. The region between 20 and 150 R sub J is dominated by a thin plasma sheet, where trapped energetic electron and proton fluxes reach their maximum. Proton spectra can be represented by an exponential in rigidity with a characteristic energy of approximately 50 keV. Proton anisotropies were consistent with corotation even at 100 R sub J. A major proton acceleration event as well as several cases of field aligned proton streaming were observed. The flux of 0.4 MeV protons decreases by three orders of magnitude between 30 and 90 R sub J and then remains relatively constant to the magnetopause. Fine structure in the data indicate longitudinal asymmetries with respect to the dipole orientation. Electron spectra in the magnetosheath and interplanetary space are modulated by the Jovian longitude relative to the subsolar point

    Energetic protons in the Jovian magnetosphere

    Get PDF
    The time histories, angular distributions and energy spectra of energetic protons were measured over an energy range extending from 0.2 - 20 MeV for the four passes of Pioneers 10 and 11 through the Jovian magnetosphere. Azimuthal asymmetries appear to dominate with time variations also contributing to the very complex topology. On the inbound P-10 pass the expected corotation anisotropy was not observed in the outer magnetosphere supporting the probable existence of a planetary wind in this region. Near the dawn meredian particle streaming away from the planet begins at about 15 RJ. On both the P-10 inbound and P-11 outbound passes, there are regions where only partial corotation is achieved. In the mid-magnetosphere, field-aligned streaming away from the near-equatorial current sheet region is the most prominent feature. At mid-latitudes in the subsolar regime, the streaming pattern is more chaotic and its magnitude is smaller. Qualitative discussions are presented for a number of possible mechanisms which could produce this streaming

    The anomalous abundance of cosmic ray nitrogen and oxygen nuclei at low energies

    Get PDF
    Recent measurements using a cosmic ray telescope on the Pioneer 10 spacecraft have revealed an anomalous spectrum of nitrogen and oxygen nuclei relative to other nuclei such as He and C, in the energy range 3-30 MeV/nuc. The intensity of nitrogen and oxygen nuclei is enhanced by a factor of up to 20 relative to their abundance in galactic or solar cosmic rays

    Interplanetary MeV electrons of Jovian origin

    Get PDF
    Observations of low energy electron increases observed in interplanetary space on Pioneer 10 are reported as it approached Jupiter. These discrete bursts were several hundred times the normal quiet-time electron flux, and became more frequent as one approached Jupiter resulting in the quasi-continuous presence of large fluxes of these electrons in interplanetary space. It is noted that the integrated flux from quiet-time electrons is comparable to the integrated ambient electron flux itself. In addition, the spectrum of electrons observed in Jupiter's magnetosphere, on Pioneer 10 in interplanetary space near Jupiter, for the quiet-time increases near the earth, and for the ambient electron spectrum are all remarkably similar. These two lines of evidence suggest the possibility that Jupiter could be the source of most of the ambient electrons at low energies

    Observations of galactic cosmic ray energy spectra between 1 and 9 AU

    Get PDF
    The variation of the 5 to 500 MeV/nuc cosmic ray helium component was studied between 1 and 9 A.U. using essentially identical detector systems on Pioneer 10 and 11 and Helios I. Between 100 and 200 MeV/nuc a radial gradient of 3.3?1.3%/A.U. is found. At 15 MeV/nuc this value increases to 20?4%/A.U. Between 4 and 9 A.U. a well defined intensity maximum is observed at approximately 17 MeV/nuc. The average adiabatic energy loss between 1 and 9 A.U. is approximately 4 MeV/nuc/A.U. The observed radial variation between 1 and 9 A.U. is well described by the Gleeson-Axford force field solution of the modulation equations over an energy range extending from 15 to 500 MeV/nuc and is in good agreement with the results reported by other Pioneer experiments. These values are much smaller than had been theoretically predicted

    Jovian protons and electrons: Pioneer 11

    Get PDF
    A preliminary account of the Pioneer 11 passage through the Jovian magnetosphere as viewed by particle detector systems is presented. Emphasis is placed on the region well within the Jovian magnetosphere using data from the LET-II telescope, which measured the proton flux from 0.2 to 21.2 MeV in seven energy intervals and electrons from 0.1 to 2 MeV in four energy intervals. The relative trajectories of Pioneer 10 and 11 are discussed and indicate that Pioneer 11 was exposed to a much lower total radiation dose than Pioneer 10, largely as a result of the retrograde trajectory which approached and exited the inner region of the magnetosphere at high latitudes. Angular distributions, calculations from Pioneer 11 magnetic field data, and the low-energy nucleon component are included in the discussion

    The interplanetary acceleration of energetic nucleons

    Get PDF
    Co-rotating proton and electron streams are the dominant type of low-energy (0.1-10 MeV/nucleon) particle event observed at 1 A.U. The radial dependence of these events was studied between 1 and 4.6 A.U. using essentially identical low-energy detector systems on IMP 7, Pioneer 10 and Pioneer 11. It was expected that at a given energy, the intensity of these streams would decrease rapidly with heliocentric distance due to the effects of interplanetary adiabatic deceleration. Instead it was found that from event to event the intensity either remains roughly constant or increases significantly (more than an order of magnitude) between 1 and 3 A.U. It appears that interplanetary acceleration processes are the most plausible explanation. Several possible acceleration models are explored
    • …
    corecore