20,744 research outputs found

    Phase Diagram of the Holstein-Hubbard Two-Leg Ladder

    Get PDF
    Using a functional renormalization group method, we obtain the phase diagram of the two-leg ladder system within the Holstein-Hubbard model, which includes both electron-electron and electron-phonon interactions. Our renormalization group technique allows us to analyze the problem for both weak and strong electron-phonon coupling. We show that, in contrast results from conventional weak coupling studies, electron-phonon interactions can dominate electron-electron interactions because of retardation effects.Comment: 4 page

    Spin Relaxation Times of Single-Wall Carbon Nanotubes

    Get PDF
    We have measured temperature (TT)- and power-dependent electron spin resonance in bulk single-wall carbon nanotubes to determine both the spin-lattice and spin-spin relaxation times, T1T_1 and T2T_2. We observe that T11T_1^{-1} increases linearly with TT from 4 to 100 K, whereas T21T_2^{-1} {\em decreases} by over a factor of two when TT is increased from 3 to 300 K. We interpret the T11TT_1^{-1} \propto T trend as spin-lattice relaxation via interaction with conduction electrons (Korringa law) and the decreasing TT dependence of T21T_2^{-1} as motional narrowing. By analyzing the latter, we find the spin hopping frequency to be 285 GHz. Last, we show that the Dysonian lineshape asymmetry follows a three-dimensional variable-range hopping behavior from 3 to 20 K; from this scaling relation, we extract a localization length of the hopping spins to be \sim100 nm.Comment: 6 pages, 3 figure

    Broken time-reversal symmetry in Josephson junction involving two-band superconductors

    Full text link
    A novel time-reversal symmetry breaking state is found theoretically in the Josephson junction between the two-gap superconductor and the conventional s-wave superconductor. This occurs due to the frustration between the three order parameters analogous to the two antiferromagnetically coupled XY-spins put under a magnetic field. This leads to the interface states with the energies inside the superconducting gap. Possible experimental observations of this state with broken time-reversal symmetry are discussed.Comment: 9 pages, 1 figur

    Stable directions for small nonlinear Dirac standing waves

    Full text link
    We prove that for a Dirac operator with no resonance at thresholds nor eigenvalue at thresholds the propagator satisfies propagation and dispersive estimates. When this linear operator has only two simple eigenvalues close enough, we study an associated class of nonlinear Dirac equations which have stationary solutions. As an application of our decay estimates, we show that these solutions have stable directions which are tangent to the subspaces associated with the continuous spectrum of the Dirac operator. This result is the analogue, in the Dirac case, of a theorem by Tsai and Yau about the Schr\"{o}dinger equation. To our knowledge, the present work is the first mathematical study of the stability problem for a nonlinear Dirac equation.Comment: 62 page

    Optical Spectroscopic Survey of High-latitude WISE-selected Sources

    Get PDF
    We report on the results of an optical spectroscopic survey at high Galactic latitude (|b| ≥ 30°) of a sample of WISE-selected targets, grouped by WISE W1 (λ_eff = 3.4 μm) flux, which we use to characterize the sources WISE detected. We observed 762 targets in 10 disjoint fields centered on ultraluminous infrared galaxy candidates using DEIMOS on Keck II. We find 0.30 ± 0.02 galaxies arcmin–2 with a median redshift of z = 0.33 ± 0.01 for the sample with W1 ≥ 120 μJy. The foreground stellar densities in our survey range from 0.23 ± 0.07 arcmin–2 to 1.1 ± 0.1 arcmin–2 for the same sample. We obtained spectra that produced science grade redshifts for ≥90% of our targets for sources with W1 flux ≥120 μJy that also had an i-band flux gsim 18 μJy. We used this for targeting very preliminary data reductions available to the team in 2010 August. Our results therefore present a conservative estimate of what is possible to achieve using WISE's Preliminary Data Release for the study of field galaxies
    corecore