150 research outputs found

    Matrix bandwidth and profile reduction

    Get PDF
    This program, REDUCE, reduces the bandwidth and profile of sparse symmetric matrices, using row and corresponding column permutations. It is a realization of the algorithm described by the authors elsewhere. It was extensively tested and compared with several other programs and was found to be considerably faster than the others, superior for bandwidth reduction and as satisfactory as any other for profile reduction

    An Explicit Lower Bound of 5n − o(n) for Boolean Circuits

    Full text link

    The Computational Complexity of Knot and Link Problems

    Full text link
    We consider the problem of deciding whether a polygonal knot in 3-dimensional Euclidean space is unknotted, capable of being continuously deformed without self-intersection so that it lies in a plane. We show that this problem, {\sc unknotting problem} is in {\bf NP}. We also consider the problem, {\sc unknotting problem} of determining whether two or more such polygons can be split, or continuously deformed without self-intersection so that they occupy both sides of a plane without intersecting it. We show that it also is in NP. Finally, we show that the problem of determining the genus of a polygonal knot (a generalization of the problem of determining whether it is unknotted) is in {\bf PSPACE}. We also give exponential worst-case running time bounds for deterministic algorithms to solve each of these problems. These algorithms are based on the use of normal surfaces and decision procedures due to W. Haken, with recent extensions by W. Jaco and J. L. Tollefson.Comment: 32 pages, 1 figur

    Composition with Target Constraints

    Full text link
    It is known that the composition of schema mappings, each specified by source-to-target tgds (st-tgds), can be specified by a second-order tgd (SO tgd). We consider the question of what happens when target constraints are allowed. Specifically, we consider the question of specifying the composition of standard schema mappings (those specified by st-tgds, target egds, and a weakly acyclic set of target tgds). We show that SO tgds, even with the assistance of arbitrary source constraints and target constraints, cannot specify in general the composition of two standard schema mappings. Therefore, we introduce source-to-target second-order dependencies (st-SO dependencies), which are similar to SO tgds, but allow equations in the conclusion. We show that st-SO dependencies (along with target egds and target tgds) are sufficient to express the composition of every finite sequence of standard schema mappings, and further, every st-SO dependency specifies such a composition. In addition to this expressive power, we show that st-SO dependencies enjoy other desirable properties. In particular, they have a polynomial-time chase that generates a universal solution. This universal solution can be used to find the certain answers to unions of conjunctive queries in polynomial time. It is easy to show that the composition of an arbitrary number of standard schema mappings is equivalent to the composition of only two standard schema mappings. We show that surprisingly, the analogous result holds also for schema mappings specified by just st-tgds (no target constraints). This is proven by showing that every SO tgd is equivalent to an unnested SO tgd (one where there is no nesting of function symbols). Similarly, we prove unnesting results for st-SO dependencies, with the same types of consequences.Comment: This paper is an extended version of: M. Arenas, R. Fagin, and A. Nash. Composition with Target Constraints. In 13th International Conference on Database Theory (ICDT), pages 129-142, 201

    Randomisation and Derandomisation in Descriptive Complexity Theory

    Full text link
    We study probabilistic complexity classes and questions of derandomisation from a logical point of view. For each logic L we introduce a new logic BPL, bounded error probabilistic L, which is defined from L in a similar way as the complexity class BPP, bounded error probabilistic polynomial time, is defined from PTIME. Our main focus lies on questions of derandomisation, and we prove that there is a query which is definable in BPFO, the probabilistic version of first-order logic, but not in Cinf, finite variable infinitary logic with counting. This implies that many of the standard logics of finite model theory, like transitive closure logic and fixed-point logic, both with and without counting, cannot be derandomised. Similarly, we present a query on ordered structures which is definable in BPFO but not in monadic second-order logic, and a query on additive structures which is definable in BPFO but not in FO. The latter of these queries shows that certain uniform variants of AC0 (bounded-depth polynomial sized circuits) cannot be derandomised. These results are in contrast to the general belief that most standard complexity classes can be derandomised. Finally, we note that BPIFP+C, the probabilistic version of fixed-point logic with counting, captures the complexity class BPP, even on unordered structures

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Evaluating QBF Solvers: Quantifier Alternations Matter

    Full text link
    We present an experimental study of the effects of quantifier alternations on the evaluation of quantified Boolean formula (QBF) solvers. The number of quantifier alternations in a QBF in prenex conjunctive normal form (PCNF) is directly related to the theoretical hardness of the respective QBF satisfiability problem in the polynomial hierarchy. We show empirically that the performance of solvers based on different solving paradigms substantially varies depending on the numbers of alternations in PCNFs. In related theoretical work, quantifier alternations have become the focus of understanding the strengths and weaknesses of various QBF proof systems implemented in solvers. Our results motivate the development of methods to evaluate orthogonal solving paradigms by taking quantifier alternations into account. This is necessary to showcase the broad range of existing QBF solving paradigms for practical QBF applications. Moreover, we highlight the potential of combining different approaches and QBF proof systems in solvers.Comment: preprint of a paper to be published at CP 2018, LNCS, Springer, including appendi

    The Complexity of Computing Minimal Unidirectional Covering Sets

    Full text link
    Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08] proved that it is NP-hard to decide whether an alternative is contained in some inclusion-minimal upward or downward covering set. For both problems, we raise this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other natural problems regarding minimal or minimum-size covering sets are hard or complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of our results is that neither minimal upward nor minimal downward covering sets (even when guaranteed to exist) can be computed in polynomial time unless P=NP. This sharply contrasts with Brandt and Fischer's result that minimal bidirectional covering sets (i.e., sets that are both minimal upward and minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure
    • …
    corecore