9 research outputs found

    Methanosarcina acetivorans C2A Topoisomerase IIIα, an Archaeal Enzyme with Promiscuity in Divalent Cation Dependence

    Get PDF
    Topoisomerases play a fundamental role in genome stability, DNA replication and repair. As a result, topoisomerases have served as therapeutic targets of interest in Eukarya and Bacteria, two of the three domains of life. Since members of Archaea, the third domain of life, have not been implicated in any diseased state to-date, there is a paucity of data on archaeal topoisomerases. Here we report Methanosarcina acetivorans TopoIIIα (MacTopoIIIα) as the first biochemically characterized mesophilic archaeal topoisomerase. Maximal activity for MacTopoIIIα was elicited at 30–35°C and 100 mM NaCl. As little as 10 fmol of the enzyme initiated DNA relaxation, and NaCl concentrations above 250 mM inhibited this activity. The present study also provides the first evidence that a type IA Topoisomerase has activity in the presence of all divalent cations tested (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+). Activity profiles were, however, specific to each metal. Known type I (ssDNA and camptothecin) and type II (etoposide, novobiocin and nalidixic acid) inhibitors with different mechanisms of action were used to demonstrate that MacTopoIIIα is a type IA topoisomerase. Alignment of MacTopoIIIα with characterized topoisomerases identified Y317 as the putative catalytic residue, and a Y317F mutation ablated DNA relaxation activity, demonstrating that Y317 is essential for catalysis. As the role of Domain V (C-terminal domain) is unclear, MacTopoIIIα was aligned with the canonical E. coli TopoI 67 kDa fragment in order to construct an N-terminal (1–586) and a C-terminal (587–752) fragment for analysis. Activity could neither be elicited from the fragments individually nor reconstituted from a mixture of the fragments, suggesting that native folding is impaired when the two fragments are expressed separately. Evidence that each of the split domains plays a role in Zn2+ binding of the enzyme is also provided

    Alert System for High Speed and Acceleration in Land Vehicles

    No full text

    Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers

    No full text
    Inositol polyphosphate 4-phosphatase-II (INPP4B) is a regulator of the phosphoinositide 3-kinase (PI3K) signaling pathway and is implicated as a tumor suppressor in epithelial carcinomas. INPP4B loss of heterozygosity (LOH) is detected in some human breast cancers; however, the expression of INPP4B protein in breast cancer subtypes and the normal breast is unknown. We report here that INPP4B is expressed in nonproliferative estrogen receptor (ER)-positive cells in the normal breast, and in ER-positive, but not negative, breast cancer cell lines. INPP4B knockdown in ER-positive breast cancer cells increased Akt activation, cell proliferation, and xenograft tumor growth. Conversely, reconstitution of INPP4B expression in ER-negative, INPP4B-null human breast cancer cells reduced Akt activation and anchorage-independent growth. INPP4B protein expression was frequently lost in primary human breast carcinomas, associated with high clinical grade and tumor size and loss of hormone receptors and was lost most commonly in aggressive basal-like breast carcinomas. INPP4B protein loss was also frequently observed in phosphatase and tensin homolog (PTEN)-null tumors. These studies provide evidence that INPP4B functions as a tumor suppressor by negatively regulating normal and malignant mammary epithelial cell proliferation through regulation of the PI3K/Akt signaling pathway, and that loss of INPP4B protein is a marker of aggressive basal-like breast carcinomas

    Bionanomaterial thin film for piezoelectric applications

    No full text
    Wearable and flexible electronics are becoming of recent interest due to expansion of Internet of Things (IOT). Thin film piezoelectric materials have the potential to be used as the development of flexible electronic devices in energy harvesting, sensing and biomedicine. This is mainly be-cause of the inherent ability of piezoelectric materials to convert the mechanical energy to the electrical energy or vice versa. Piezoelectricity in material represents the property of certain crys-talline structure that is capable to developing electricity when pressure is applied. However, con-ventional piezoelectric materials such as PZT (lead zirconate titanate) and PVDF (poly(vinylidene flouride)) are expensive, non-renewable, non-biodegradable and lack of biocom-patibility due to the cytotoxicity nature of lead-based material. Piezoelectric material from natu-ral polymers of biomaterial may provide the solutions for the drawbacks of piezoceramics and piezoelectric polymers. This review emphasis is on the piezoelectricity of various bionanomaterials (cellulose, chitin, chitosan, collagen, amino acid and peptide). The various methods used to measure piezoelectricity of biomaterials is also discussed. This study shows that biomaterials have the potential to be used as piezoelectric nanogenerators in energy harvesting, sensors and biosensors, as well as in cell and tissue engineering, wound healing and drug delivery
    corecore