17 research outputs found

    Dating archaeological copper using electrochemical impedance spectroscopy. Comparison with voltammetry of microparticles dating

    Full text link
    [EN] A methodology for dating copper/bronze archaeological objects aged under atmospheric environments using electrochemical impedance spectroscopy (EIS) is described. The method is based on the measurement of resistance associated to the growth of corrosion layers in EIS recorded upon immersion of the pieces in mineral water and applying a bias potential for the reduction of dissolved oxygen. Theoretical expressions for the time variation of such resistance following a potential rate law are presented. Equivalent expressions are derived and applied for estimating the variation of the tenorite/cuprite ratio from their specific voltammetric signals using voltammetry of microparticles data. Calibration curves were constructed from a set of well-documented coins.Financial support from the MEC Projects CTQ2011-28079-CO3-01 and 02 and CTQ2014-53736-C3-2-P which are supported with ERDF funds is gratefully acknowledged.Domenech Carbo, A.; Capelo, S.; Piquero-Cilla, J.; Domenech Carbo, MT.; Barrio, J.; Fuentes, A.; Al Sekhaneh, W. (2016). Dating archaeological copper using electrochemical impedance spectroscopy. Comparison with voltammetry of microparticles dating. Materials and Corrosion. 67(2):120-129. https://doi.org/10.1002/maco.201408048S120129672Friedman, I., & Smith, R. L. (1960). Part I, The Development of the Method. American Antiquity, 25(4), 476-493. doi:10.2307/276634Reich, S., Leitus, G., & Shalev, S. (2003). Measurement of corrosion content of archaeological lead artifacts by their Meissner response in the superconducting state; a new dating method. New Journal of Physics, 5, 99-99. doi:10.1088/1367-2630/5/1/399Scholz, F., Schröder, U., Meyer, S., Brainina, K. Z., Zakhachuk, N. F., Sobolev, N. V., & Kozmenko, O. A. (1995). The electrochemical response of radiation defects of non-conducting materials An electrochemical access to age determinations. Journal of Electroanalytical Chemistry, 385(1), 139-142. doi:10.1016/0022-0728(94)03840-yDoménech-Carbó, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13Doménech-Carbó, A., Doménech-Carbó, M. T., & Costa, V. (Eds.). (2009). Electrochemical Methods in Archaeometry, Conservation and Restoration. Monographs in Electrochemistry. doi:10.1007/978-3-540-92868-3Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, M. A. (2011). Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Analytical Chemistry, 83(14), 5639-5644. doi:10.1021/ac200731qDoménech-Carbó, A., Doménech-Carbó, M. T., Capelo, S., Pasíes, T., & Martínez-Lázaro, I. (2014). Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles. Angewandte Chemie International Edition, 53(35), 9262-9266. doi:10.1002/anie.201404522Benarie, M., & Lipfert, F. L. (1986). A general corrosion function in terms of atmospheric pollutant concentrations and rain pH. Atmospheric Environment (1967), 20(10), 1947-1958. doi:10.1016/0004-6981(86)90336-7Strandberg, H. (1998). Reactions of copper patina compounds—II. influence of sodium chloride in the presence of some air pollutants. Atmospheric Environment, 32(20), 3521-3526. doi:10.1016/s1352-2310(98)00058-2Cano, E., Lafuente, D., & Bastidas, D. M. (2009). Use of EIS for the evaluation of the protective properties of coatings for metallic cultural heritage: a review. Journal of Solid State Electrochemistry, 14(3), 381-391. doi:10.1007/s10008-009-0902-6Hernandez-Escampa, M., Gonzalez, J., & Uruchurtu-Chavarin, J. (2009). Electrochemical assessment of the restoration and conservation of a heavily corroded archaeological iron artifact. Journal of Applied Electrochemistry, 40(2), 345-356. doi:10.1007/s10800-009-0003-3Angelini, E., Grassini, S., Parvis, M., & Zucchi, F. (2011). An in situ investigation of the corrosion behaviour of a weathering steel work of art. Surface and Interface Analysis, 44(8), 942-946. doi:10.1002/sia.3842Grassini, S., Angelini, E., Parvis, M., Bouchar, M., Dillmann, P., & Neff, D. (2013). An in situ corrosion study of Middle Ages wrought iron bar chains in the Amiens Cathedral. Applied Physics A, 113(4), 971-979. doi:10.1007/s00339-013-7724-1Doménech-Carbó, A., Doménech-Carbó, M. T., Peiró-Ronda, M. A., Martínez-Lázaro, I., & Barrio-Martín, J. (2012). Application of the voltammetry of microparticles for dating archaeological lead using polarization curves and electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 16(7), 2349-2356. doi:10.1007/s10008-012-1668-9Degrigny, C., Guibert, G., Ramseyer, S., Rapp, G., & Tarchini, A. (2009). Use of E corr vs time plots for the qualitative analysis of metallic elements from scientific and technical objects: the SPAMT Test Project. Journal of Solid State Electrochemistry, 14(3), 425-435. doi:10.1007/s10008-009-0890-6Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719Souissi, N., Triki, E., Bousselmi, L., & Khosrof, S. (2006). Comparaison between archaeological and artificially aged bronze interfaces. Materials and Corrosion, 57(10), 794-799. doi:10.1002/maco.200503974Souissi, N., & Triki, E. (2009). Characterization of ethnographic copper corrosion. Materials and Corrosion, 60(4), 262-268. doi:10.1002/maco.200805068Mata, A. L., Salta, M. M. L., Neto, M. M. M., Mendonça, M. H., & Fonseca, I. T. E. (2010). Characterization of two Roman coins from an archaeological site in Portugal. Materials and Corrosion, 61(3), 205-210. doi:10.1002/maco.200905284Feliu, S., Morcillo, M., & Feliu, S. (1993). The prediction of atmospheric corrosion from meteorological and pollution parameters—II. Long-term forecasts. Corrosion Science, 34(3), 415-422. doi:10.1016/0010-938x(93)90113-uSpence, J. W., Haynie, F. H., Lipfert, F. W., Cramer, S. D., & McDonald, L. G. (1992). Atmospheric Corrosion Model for Galvanized Steel Structures. CORROSION, 48(12), 1009-1019. doi:10.5006/1.3315903Bhattacharjee, S., Roy, N., Dey, A. K., & Banerjee, M. K. (1993). Statistical appraisal of the atmospheric corrosion of mild steel. Corrosion Science, 34(4), 573-581. doi:10.1016/0010-938x(93)90273-jKobus, J. (2000). Long-term atmospheric corrosion monitoring. Materials and Corrosion, 51(2), 104-108. doi:10.1002/(sici)1521-4176(200002)51:23.0.co;2-vBalasubramaniam, R., Laha, T., & Srivastava, A. (2004). Long term corrosion behaviour of copper in soil: A study of archaeological analogues. Materials and Corrosion, 55(3), 194-202. doi:10.1002/maco.200303723Natesan, M., Venkatachari, G., & Palaniswamy, N. (2006). Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India. Corrosion Science, 48(11), 3584-3608. doi:10.1016/j.corsci.2006.02.006Doménech, A., Doménech-Carbó, M. T., Pasies, T., & del Carmen Bouzas, M. (2012). Modeling Corrosion of Archaeological Silver-Copper Coins Using the Voltammetry of Immobilized Particles. Electroanalysis, 24(10), 1945-1955. doi:10.1002/elan.201200252Rosas-Camacho, O., Uquidi-Macdonald, M., & Macdonald, D. D. (2009). Deterministic Modeling of the Corrosion of Low-Carbon Steel by Dissolved Carbon Dioxide and the Effect of Acetic Acid. I-Effect of Carbon Dioxide. doi:10.1149/1.3259806Macdonald, D., & Englehardt, G. (2010). The Point Defect Model for Bi-Layer Passive Films. doi:10.1149/1.3496427Sharifi-Asl, S., Taylor, M. L., Lu, Z., Engelhardt, G. R., Kursten, B., & Macdonald, D. D. (2013). Modeling of the electrochemical impedance spectroscopic behavior of passive iron using a genetic algorithm approach. Electrochimica Acta, 102, 161-173. doi:10.1016/j.electacta.2013.03.143Macdonald, D. D. (2011). The history of the Point Defect Model for the passive state: A brief review of film growth aspects. Electrochimica Acta, 56(4), 1761-1772. doi:10.1016/j.electacta.2010.11.005Doménech-Carbó, A., Lastras, M., Rodríguez, F., Cano, E., Piquero-Cilla, J., & Osete-Cortina, L. (2013). Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 18(2), 399-409. doi:10.1007/s10008-013-2232-yBlum, D., Leyffer, W., & Holze, R. (1996). Pencil-Leads as new electrodes for abrasive stripping voltammetry. Electroanalysis, 8(3), 296-297. doi:10.1002/elan.1140080317Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, Mªa. (2011). ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis, 23(6), 1391-1400. doi:10.1002/elan.201000739Nair, M. T. ., Guerrero, L., Arenas, O. L., & Nair, P. . (1999). Chemically deposited copper oxide thin films: structural, optical and electrical characteristics. Applied Surface Science, 150(1-4), 143-151. doi:10.1016/s0169-4332(99)00239-1Scott, D. A. (1997). Copper compounds in metals and colorants: oxides and hydroxides. Studies in Conservation, 42(2), 93-100. doi:10.1179/sic.1997.42.2.93Doménech, A., Doménech-Carbó, M. T., & Martínez-Lázaro, I. (2010). Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles. Analytica Chimica Acta, 680(1-2), 1-9. doi:10.1016/j.aca.2010.09.002Doménech, A., Doménech-Carbó, M. T., Pasies, T., & Bouzas, M. C. (2011). Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles. Electroanalysis, 23(12), 2803-2812. doi:10.1002/elan.201100577Li, W. S., Cai, S. Q., & Luo, J. L. (2004). Chronopotentiometric Responses and Capacitance Behaviors of Passive Film Formed on Iron in Borate Buffer Solution. Journal of The Electrochemical Society, 151(4), B220. doi:10.1149/1.1667521Liu, W., Zhang, H., Qu, Z., Zhang, Y., & Li, J. (2009). Corrosion behavior of the steel used as a huge storage tank in seawater. Journal of Solid State Electrochemistry, 14(6), 965-973. doi:10.1007/s10008-009-0886-2Toledo-Matos, L. A., & Pech-Canul, M. A. (2010). Evolution of an iron passive film in a borate buffer solution (pH 8.4). Journal of Solid State Electrochemistry, 15(9), 1927-1934. doi:10.1007/s10008-010-1213-7Park, J.-J., & Pyun, S.-I. (2003). Analysis of impedance spectra of a pitted Inconel alloy 600 electrode in chloride ion-containing thiosulfate solution at temperatures of 298–573 K. Journal of Solid State Electrochemistry, 7(6), 380-388. doi:10.1007/s10008-002-0346-8Ibrahim, M. A., Pongkao, D., & Yoshimura, M. (2001). The electrochemical behavior and characterization of the anodic oxide film formed on titanium in NaOH solutions. Journal of Solid State Electrochemistry, 6(5), 341-350. doi:10.1007/s100080100229Xia, Z., Nanjo, H., Aizawa, T., Kanakubo, M., Fujimura, M., & Onagawa, J. (2007). Growth process of atomically flat anodic films on titanium under potentiostatical electrochemical treatment in H2SO4 solution. Surface Science, 601(22), 5133-5141. doi:10.1016/j.susc.2007.04.211Acevedo-Peña, P., Vázquez, G., Laverde, D., Pedraza-Rosas, J. E., & González, I. (2009). Influence of structural transformations over the electrochemical behavior of Ti anodic films grown in 0.1 M NaOH. Journal of Solid State Electrochemistry, 14(5), 757-767. doi:10.1007/s10008-009-0838-xFabregat-Santiago, F., Bisquert, J., Garcia-Belmonte, G., Boschloo, G., & Hagfeldt, A. (2005). Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and Solar Cells, 87(1-4), 117-131. doi:10.1016/j.solmat.2004.07.017Rubinstein, I. (1987). Electrochemical Impedance Analysis of Polyaniline Films on Electrodes. Journal of The Electrochemical Society, 134(12), 3078. doi:10.1149/1.2100343Lee, S.-J., & Pyun, S.-I. (2006). Assessment of corrosion resistance of surface-coated galvanized steel by analysis of the AC impedance spectra measured on the salt-spray-tested specimen. Journal of Solid State Electrochemistry, 11(6), 829-839. doi:10.1007/s10008-006-0229-5Doménech, A., Doménech-Carbó, M. T., & Edwards, H. G. M. (2008). Quantitation from Tafel Analysis in Solid-State Voltammetry. Application to the Study of Cobalt and Copper Pigments in Severely Damaged Frescoes. Analytical Chemistry, 80(8), 2704-2716. doi:10.1021/ac7024333Mora, N., Cano, E., Polo, J. L., Puente, J. M., & Bastidas, J. M. (2004). Corrosion protection properties of cerium layers formed on tinplate. Corrosion Science, 46(3), 563-578. doi:10.1016/s0010-938x(03)00171-9Bastidas, J. M., Polo, J. L., Cano, E., Torres, C. L., & Mora, N. (2000). Localised corrosion of highly alloyed stainless steels in an ammonium chloride and diethylamine chloride aqueous solution. Materials and Corrosion, 51(10), 712-718. doi:10.1002/1521-4176(200010)51:103.0.co;2-vXu, J., Huang, W., & McCreery, R. L. (1996). Isotope and surface preparation effects on alkaline dioxygen reduction at carbon electrodes. Journal of Electroanalytical Chemistry, 410(2), 235-242. doi:10.1016/0022-0728(96)04545-7Kuang, F., Zhang, D., Li, Y., Wan, Y., & Hou, B. (2008). Electrochemical impedance spectroscopy analysis for oxygen reduction reaction in 3.5% NaCl solution. Journal of Solid State Electrochemistry, 13(3), 385-390. doi:10.1007/s10008-008-0570-yChen, G., Waraksa, C. C., Cho, H., Macdonald, D. D., & Mallouka, T. E. (2003). EIS Studies of Porous Oxygen Electrodes with Discrete Particles. Journal of The Electrochemical Society, 150(9), E423. doi:10.1149/1.159472

    In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism

    Get PDF
    Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance(NMR) methodologies to study changes at the electrode−electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations
    corecore