885 research outputs found
DISC1 Pathway in Brain Development: Exploring Therapeutic Targets for Major Psychiatric Disorders
Genetic risk factors for major psychiatric disorders play key roles in neurodevelopment. Thus, exploring the molecular pathways of risk genes is important not only for understanding the molecular mechanisms underlying brain development, but also to decipher how genetic disturbances affect brain maturation and functioning relevant to major mental illnesses. During the last decade, there has been significant progress in determining the mechanisms whereby risk genes impact brain development. Nonetheless, given that the majority of psychiatric disorders have etiological complexities encompassing multiple risk genes and environmental factors, the biological mechanisms of these diseases remain poorly understood. How can we move forward to our research for discovery of the biological markers and novel therapeutic targets for major mental disorders? Here we review recent progress in the neurobiology of disrupted in schizophrenia 1 (DISC1), a major risk gene for major mental disorders, with a particular focus on its roles in cerebral cortex development. Convergent findings implicate DISC1 as part of a large, multi-step pathway implicated in various cellular processes and signal transduction. We discuss links between the DISC1 pathway and environmental factors, such as immune/inflammatory responses, which may suggest novel therapeutic targets. Existing treatments for major mental disorders are hampered by a limited number of pharmacological targets. Consequently, elucidation of the DISC1 pathway, and its association with neuropsychiatric disorders, may offer hope for novel treatment interventions
Modulation of SK Channel Trafficking by Beta Adrenoceptors Enhances Excitatory Synaptic Transmission and Plasticity in the Amygdala
Emotionally arousing events are particularly well remembered. This effect is known to result from the release of stress hormones and activation of beta adrenoceptors in the amygdala. However, the underlying cellular mechanisms are not understood. Small conductance calcium-activated potassium (SK) channels are present at glutamatergic synapses where they limit synaptic transmission and plasticity. Here, we show that beta adrenoceptor activation regulates synaptic SK channels in lateral amygdala pyramidal neurons, through activation of protein kinase A. We show that SK channels are constitutively recycled from the postsynaptic membrane and that activation of beta adrenoceptors removes SK channels from excitatory synapses. This results in enhanced synaptic transmission and plasticity. Our findings demonstrate a novel mechanism by which beta adrenoceptors control synaptic transmission and plasticity, through regulation of SK channel trafficking, and suggest that modulation of synaptic SK channels may contribute to beta adrenoceptor-mediated potentiation of emotional memories
LMTK2 binds to kinesin light chains to mediate anterograde axonal transport of cdk5/p35 and LMTK2 levels are reduced in Alzheimer's disease brains
Cyclin dependent kinase-5 (cdk5)/p35 is a neuronal kinase that regulates key axonal and synaptic functions but the mechanisms by which it is transported to these locations are unknown. Lemur tyrosine kinase-2 (LMTK2) is a binding partner for p35 and here we show that LMTK2 also interacts with kinesin-1 light chains (KLC1/2). Binding to KLC1/2 involves a C-terminal tryptophan/aspartate (WD) motif in LMTK2 and the tetratricopeptide repeat (TPR) domains in KLC1/2, and this interaction facilitates axonal transport of LMTK2. Thus, siRNA loss of KLC1 or mutation of the WD motif disrupts axonal transport of LMTK2. We also show that LMTK2 facilitates the formation of a complex containing KLC1 and p35 and that siRNA loss of LMTK2 disrupts axonal transport of both p35 and cdk5. Finally, we show that LMTK2 levels are reduced in Alzheimer’s disease brains. Damage to axonal transport and altered cdk5/p35 are pathogenic features of Alzheimer’s disease. Thus, LMTK2 binds to KLC1 to direct axonal transport of p35 and its loss may contribute to Alzheimer’s disease
Searches at HERA for Squarks in R-Parity Violating Supersymmetry
A search for squarks in R-parity violating supersymmetry is performed in e^+p
collisions at HERA at a centre of mass energy of 300 GeV, using H1 data
corresponding to an integrated luminosity of 37 pb^(-1). The direct production
of single squarks of any generation in positron-quark fusion via a Yukawa
coupling lambda' is considered, taking into account R-parity violating and
conserving decays of the squarks. No significant deviation from the Standard
Model expectation is found. The results are interpreted in terms of constraints
within the Minimal Supersymmetric Standard Model (MSSM), the constrained MSSM
and the minimal Supergravity model, and their sensitivity to the model
parameters is studied in detail. For a Yukawa coupling of electromagnetic
strength, squark masses below 260 GeV are excluded at 95% confidence level in a
large part of the parameter space. For a 100 times smaller coupling strength
masses up to 182 GeV are excluded.Comment: 32 pages, 14 figures, 3 table
Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s
A precise measurement of the inclusive deep-inelastic e^+p scattering cross
section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and
3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in
1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The
double differential cross section, from which the proton structure function
F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is
measured with typically 1% statistical and 3% systematic uncertainties. The
measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise
continuously towards small x for fixed Q^2. The cross section data are combined
with published H1 measurements at high Q^2 for a next-to-leading order DGLAP
QCD analysis.The H1 data determine the gluon momentum distribution in the range
3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20
GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS
collaboration allows the strong coupling constant alpha_s and the gluon
distribution to be simultaneously determined. A value of alpha
_s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with
an additional theoretical uncertainty of about +-0.005, mainly due to the
uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
Women's experiences of their osteoporosis diagnosis at the time of diagnosis and 6 months later: A phenomenological hermeneutic study
This paper describes a phenomenological hermeneutic study of experiences of women who were recently diagnosed with osteoporosis. The research objective was to investigate women's experiences of living with osteoporosis during the first 6 months after diagnosis when treatment was first prescribed. Fifteen women were included in the study. The inclusion criteria were a DXA scan at one of the two hospitals showing a T-score below −2.5 (lower back or hip), age 65 years or older; no previous known osteoporotic fracture; at least one of the known risk factors for osteoporosis; and prescription of anti-osteoporotic treatment. Exclusion criteria were previous diagnosis of osteoporosis or previous treatment with anti-osteoporotic medication. Data were collected through in-depth interviews shortly after diagnosis and 6 months later. The performed analyses were inspired by Paul Ricoeur's theory of interpretation of texts comprising three levels: naïve reading, structural analysis, and critical interpretation and discussion. Three key themes emerged: 1) being diagnosed, 2) being prescribed medical treatment, and 3) being on the path of learning to live with osteoporosis. The findings suggest a need for improved support for the patients to gain understanding of their diagnosis and the risk of osteoporotic fracture as well as to learn to live with osteoporosis. The study highlights new health promotion areas for targeting interventions at newly diagnosed patients, helping them accept and interpret the diagnosis, and the medical treatment
Effects of vitamin E supplementation on renal non-enzymatic antioxidants in young rats submitted to exhaustive exercise stress
<p>Abstract</p> <p>Background</p> <p>Exercise stress was shown to increase oxidative stress in rats. It lacks reports of increased protection afforded by dietary antioxidant supplements against ROS production during exercise stress. We evaluated the effects of vitamin E supplementation on renal non-enzymatic antioxidants in young rats submitted to exhaustive exercise stress.</p> <p>Methods</p> <p>Wistar rats were divided into three groups: 1) control group; 2) exercise stress group and; 3) exercise stress + Vitamin E group. Rats from the group 3 were treated with gavage administration of 1 mL of Vitamin E (5 mg/kg) for seven consecutive days. Animals from groups 2 and 3 were submitted to a bout of swimming exhaustive exercise stress. Kidney samples were analyzed for Thiobarbituric Acid Reactive Substances to (TBARS) by malondialdehyde (MDA), reduced glutathione (GSH) and vitamin-E levels.</p> <p>Results</p> <p>The group treated with vitamin E and submitted to exercise stress presented the lowest levels of renal MDA (1: 0.16+0.02 mmmol/mgprot vs. 2: 0.34+0.07 mmmol/mgprot vs. 3: 0.1+0.01 mmmol/mgprot; p < 0.0001), the highest levels of renal GSH (1: 23+4 μmol/gprot vs. 2: 23+2 μmol/gprot vs. 3: 58+9 μmol/gprot; p < 0.0001) and the highest levels of renal vitamin E (1: 24+6 μM/gtissue vs. 2: 28+2 μM/gtissue vs. 3: 43+4 μM/gtissue; p < 0.001).</p> <p>Conclusion</p> <p>Vitamin E supplementation improved non-enzymatic antioxidant activity in young rats submitted to exhaustive exercise stress.</p
Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions
The effects of soil minerals on chromate (Cr(VI)O(4)(2-), noted as Cr(VI)) reduction by sulfide were investigated in the pH range of 7.67 to 9.07 under the anoxic condition. The examined minerals included montmorillonite (Swy-2), illite (IMt-2), kaolinite (KGa-2), aluminum oxide (γ-Al(2)O(3)), titanium oxide (TiO(2), P-25, primarily anatase), and silica (SiO(2)). Based on their effects on Cr(VI) reduction, these minerals were categorized into three groups: (i) minerals catalyzing Cr(VI) reduction – illite; (ii) minerals with no effect – Al(2)O(3); and (iii) minerals inhibiting Cr(VI) reduction- kaolinite, montmorillonite, SiO(2 )and TiO(2 ). The catalysis of illite was attributed primarily to the low concentration of iron solubilized from the mineral, which could accelerate Cr(VI) reduction by shuttling electrons from sulfide to Cr(VI). Additionally, elemental sulfur produced as the primary product of sulfide oxidation could further catalyze Cr(VI) reduction in the heterogeneous system. Previous studies have shown that adsorption of sulfide onto elemental sulfur nanoparticles could greatly increase sulfide reactivity towards Cr(VI) reduction. Consequently, the observed rate constant, k(obs), increased with increasing amounts of both iron solubilized from illite and elemental sulfur produced during the reaction. The catalysis of iron, however, was found to be blocked by phenanthroline, a strong complexing agent for ferrous iron. In this case, the overall reaction rate at the initial stage of reaction was pseudo first order with respect to Cr(VI), i.e., the reaction kinetics was similar to that in the homogeneous system, because elemental sulfur exerted no effect at the initial stage prior to accumulation of elemental sulfur nanoparticles. In the suspension of kaolinite, which belonged to group (iii), an inhibitive effect to Cr(VI) reduction was observed and subsequently examined in more details. The inhibition was due to the sorption of elemental sulfur onto kaolinite, which reduced or completely eliminated the catalytic effect of elemental sulfur, depending on kaolinite concentration. This was consistent with the observation that the catalysis of externally added elemental sulfur (50 μM) on Cr(VI) reduction would disappear with a kaolinite concentration of more than 5.0 g/L. In kaolinite suspension, the overall reaction rate law was: -d[Cr(VI)]/dt = k(obs)[H(+)](2)[Cr(VI)][HS(-)](0.70
- …