34 research outputs found

    Inhibition of urokinase plasminogen activator with a novel enzyme inhibitor, wxc-340, ameliorates endotoxin and surgery-accelerated growth of murine metastases

    Get PDF
    The urokinase plasminogen activator (u-PA) is intimately associated with tumour invasion and metastases. Surgery facilitates accelerated metastatic tumour growth in murine models, a phenomenon related to elevated perioperative bacterial lipopolysaccaride (LPS) and inflammatory cytokine levels. The objectives of the study were to examine the role of u-PA in cytokine-enhanced tumour cell invasion in vitro and surgery-induced accelerated metastatic tumour growth in vivo and to assess the potential benefit of a novel selective u-PA inhibitor WXC-340 in this setting. CT-26 murine colorectal carcinoma cells were stimulated with LPS, tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6). Cell supernatant u-PA expression and activity were determined using a colorimetric assay and Western blot analysis, respectively. Baseline and cytokine-stimulated in vitro invasion were assessed using ECmatrix invasion chambers. Two established murine models of accelerated metastatic tumour growth were used to investigate the consequences of u-PA inhibition on postoperative metastatic tumour burden. The effect of u-PA inhibition in vitro and in vivo was examined using the novel selective u-PA inhibitor, WXC-340. Proinflammatory cytokine stimulation significantly enhanced in vitro u-PA expression, activity and extracellular matrix invasion by approximately 50% compared to controls (P<0.05). This was abrogated by WXC-340. In vivo WXC-340 almost completely ameliorated both LPS- and surgery-induced, metastatic tumour growth compared to controls (P>0.05). In conclusion, u-PA cascade is actively involved in cytokine-mediated enhanced tumour cell invasion and LPS and surgery-induced metastatic tumour growth. Perioperative u-PA inhibition with WXC-340 may represent a novel therapeutic paradigm

    Peroxisomal Alanine: Glyoxylate Aminotransferase AGT1 Is Indispensable for Appressorium Function of the Rice Blast Pathogen, Magnaporthe oryzae

    Get PDF
    The role of β-oxidation and the glyoxylate cycle in fungal pathogenesis is well documented. However, an ambiguity still remains over their interaction in peroxisomes to facilitate fungal pathogenicity and virulence. In this report, we characterize a gene encoding an alanine, glyoxylate aminotransferase 1 (AGT1) in Magnaporthe oryzae, the causative agent of rice blast disease, and demonstrate that AGT1 is required for pathogenicity of M. oryzae. Targeted deletion of AGT1 resulted in the failure of penetration via appressoria; therefore, mutants lacking the gene were unable to induce blast symptoms on the hosts rice and barley. This penetration failure may be associated with a disruption in lipid mobilization during conidial germination as turgor generation in the appressorium requires mobilization of lipid reserves from the conidium. Analysis of enhanced green fluorescent protein expression using the transcriptional and translational fusion with the AGT1 promoter and open reading frame, respectively, revealed that AGT1 expressed constitutively in all in vitro grown cell types and during in planta colonization, and localized in peroxisomes. Peroxisomal localization was further confirmed by colocalization with red fluorescent protein fused with the peroxisomal targeting signal 1. Surprisingly, conidia produced by the Δagt1 mutant were unable to form appressoria on artificial inductive surfaces, even after prolonged incubation. When supplemented with nicotinamide adenine dinucleotide (NAD+)+pyruvate, appressorium formation was restored on an artificial inductive surface. Taken together, our data indicate that AGT1-dependent pyruvate formation by transferring an amino group of alanine to glyoxylate, an intermediate of the glyoxylate cycle is required for lipid mobilization and utilization. This pyruvate can be converted to non-fermentable carbon sources, which may require reoxidation of NADH generated by the β-oxidation of fatty acids to NAD+ in peroxisomes. Therefore, it may provide a means to maintain redox homeostasis in appressoria

    The role of bioreductive activation of doxorubicin in cytotoxic activity against leukaemia HL60-sensitive cell line and its multidrug-resistant sublines

    Get PDF
    Clinical usefulness of doxorubicin (DOX) is limited by the occurrence of multidrug resistance (MDR) associated with the presence of membrane transporters (e.g. P-glycoprotein, MRP1) responsible for the active efflux of drugs out of resistant cells. Doxorubicin is a well-known bioreductive antitumour drug. Its ability to undergo a one-electron reduction by cellular oxidoreductases is related to the formation of an unstable semiquionone radical and followed by the production of reactive oxygen species. There is an increasing body of evidence that the activation of bioreductive drugs could result in the alkylation or crosslinking binding of DNA and lead to the significant increase in the cytotoxic activity against tumour cells. The aim of this study was to examine the role of reductive activation of DOX by the human liver NADPH cytochrome P450 reductase (CPR) in increasing its cytotoxic activity especially in regard to MDR tumour cells. It has been evidenced that, upon CPR catalysis, DOX underwent only the redox cycling (at low NADPH concentration) or a multistage chemical transformation (at high NADPH concentration). It was also found, using superoxide dismutase (SOD), that the first stage undergoing reductive activation according to the mechanism of the redox cycling had the key importance for the metabolic conversion of DOX. In the second part of this work, the ability of DOX to inhibit the growth of human promyelocytic-sensitive leukaemia HL60 cell line as well as its MDR sublines exhibiting two different phenotypes of MDR related to the overexpression of P-glycoprotein (HL60/VINC) or MRP1 (HL60/DOX) was studied in the presence of exogenously added CPR. Our assays showed that the presence of CPR catalysing only the redox cycling of DOX had no effect in increasing its cytotoxicity against sensitive and MDR tumour cells. In contrast, an important increase in cytotoxic activity of DOX after its reductive conversion by CPR was observed against HL60 as well as HL60/VINC and HL60/DOX cells

    Inhibition of cytochromes P4501A by nitric oxide.

    No full text
    corecore