2,119 research outputs found

    Feed-forward and its role in conditional linear optical quantum dynamics

    Full text link
    Nonlinear optical quantum gates can be created probabilistically using only single photon sources, linear optical elements and photon-number resolving detectors. These gates are heralded but operate with probabilities much less than one. There is currently a large gap between the performance of the known circuits and the established upper bounds on their success probabilities. One possibility for increasing the probability of success of such gates is feed-forward, where one attempts to correct certain failure events that occurred in the gate's operation. In this brief report we examine the role of feed-forward in improving the success probability. In particular, for the non-linear sign shift gate, we find that in a three-mode implementation with a single round of feed-forward the optimal average probability of success is approximately given by p= 0.272. This value is only slightly larger than the general optimal success probability without feed-forward, P= 0.25.Comment: 4 pages, 3 eps figures, typeset using RevTex4, problems with figures resolve

    Simulating merging binary black holes with nearly extremal spins

    Get PDF
    Astrophysically realistic black holes may have spins that are nearly extremal (i.e., close to 1 in dimensionless units). Numerical simulations of binary black holes are important tools both for calibrating analytical templates for gravitational-wave detection and for exploring the nonlinear dynamics of curved spacetime. However, all previous simulations of binary-black-hole inspiral, merger, and ringdown have been limited by an apparently insurmountable barrier: the merging holes' spins could not exceed 0.93, which is still a long way from the maximum possible value in terms of the physical effects of the spin. In this paper, we surpass this limit for the first time, opening the way to explore numerically the behavior of merging, nearly extremal black holes. Specifically, using an improved initial-data method suitable for binary black holes with nearly extremal spins, we simulate the inspiral (through 12.5 orbits), merger and ringdown of two equal-mass black holes with equal spins of magnitude 0.95 antialigned with the orbital angular momentum.Comment: 4 pages, 2 figures, updated with version accepted for publication in Phys. Rev. D, removed a plot that was incorrectly included at the end of the article in version v

    Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes

    Get PDF
    BACKGROUND: RNA interference (RNAi), which has facilitated functional characterization of mosquito neural development genes such as the axon guidance regulator semaphorin-1a (sema1a), could one day be applied as a new means of vector control. Saccharomyces cerevisiae (baker's yeast) may represent an effective interfering RNA expression system that could be used directly for delivery of RNA pesticides to mosquito larvae. Here we describe characterization of a yeast larvicide developed through bioengineering of S. cerevisiae to express a short hairpin RNA (shRNA) targeting a conserved site in mosquito sema1a genes. RESULTS: Experiments conducted on Aedes aegypti larvae demonstrated that the yeast larvicide effectively silences sema1a expression, generates severe neural defects, and induces high levels of larval mortality in laboratory, simulated-field, and semi-field experiments. The larvicide was also found to induce high levels of Aedes albopictus, Anopheles gambiae and Culex quinquefasciatus mortality. CONCLUSIONS: The results of these studies indicate that use of yeast interfering RNA larvicides targeting mosquito sema1a genes may represent a new biorational tool for mosquito control

    Hot entanglement in a simple dynamical model

    Full text link
    How mixed can one component of a bi-partite system be initially and still become entangled through interaction with a thermalized partner? We address this question here. In particular, we consider the question of how mixed a two-level system and a field mode may be such that free entanglement arises in the course of the time evolution according to a Jaynes-Cummings type interaction. We investigate the situation for which the two-level system is initially in mixed state taken from a one-parameter set, whereas the field has been prepared in an arbitrary thermal state. Depending on the particular choice for the initial state and the initial temperature of the quantised field mode, three cases can be distinguished: (i) free entanglement will be created immediately, (ii) free entanglement will be generated, but only at a later time different from zero, (iii) the partial transpose of the joint state remains positive at all times. It will be demonstrated that increasing the initial temperature of the field mode may cause the joint state to become distillable during the time evolution, in contrast to a non-distillable state at lower initial temperatures. We further assess the generated entanglement quantitatively, by evaluating the logarithmic negativity numerically, and by providing an analytical upper bound.Comment: 5 pages, 2 figures. Contribution to the proceedings of the 'International Conference on Quantum Information', Oviedo, July 13-18, 2002. Discusses sudden changes of entanglement properties in a dynamical quantum mode

    Coincident count rates in absorbing dielectric media

    Full text link
    A study of the effects of absorption on the nonlinear process of parametric down conversion is presented. Absorption within the nonlinear medium is accounted for by employing the framework of macroscopic QED and the Green tensor quantization of the electromagnetic field. An effective interaction Hamiltonian, which describes the nonlinear interaction of the electric field and the linear noise polarization field, is used to derive the quantum state of the light leaving a nonlinear crystal. The signal and idler modes of this quantum state are found to be a superpositions of the electric and noise polarization fields. Using this state, the expression for the coincident count rates for both Type I and Type II conversion are found. The nonlinear interaction with the noise polarization field were shown to cause an increase in the rate on the order of 10^{-12} for absorption of 10% per cm. This astonishingly small effect is found to be negligible compared to the decay caused by linear absorption of the propagating modes. From the expressions for the biphoton amplitude it can be seen the maximally entangled states can still be produced even in the presence of strong absorption.Comment: Updated to journal version. 10 Pages, 8 figure

    On Toroidal Horizons in Binary Black Hole Inspirals

    Get PDF
    We examine the structure of the event horizon for numerical simulations of two black holes that begin in a quasicircular orbit, inspiral, and finally merge. We find that the spatial cross section of the merged event horizon has spherical topology (to the limit of our resolution), despite the expectation that generic binary black hole mergers in the absence of symmetries should result in an event horizon that briefly has a toroidal cross section. Using insight gained from our numerical simulations, we investigate how the choice of time slicing affects both the spatial cross section of the event horizon and the locus of points at which generators of the event horizon cross. To ensure the robustness of our conclusions, our results are checked at multiple numerical resolutions. 3D visualization data for these resolutions are available for public access online. We find that the structure of the horizon generators in our simulations is consistent with expectations, and the lack of toroidal horizons in our simulations is due to our choice of time slicing.Comment: Submitted to Phys. Rev.

    Black Hole--Scalar Field Interactions in Spherical Symmetry

    Get PDF
    We examine the interactions of a black hole with a massless scalar field using a coordinate system which extends ingoing Eddington-Finkelstein coordinates to dynamic spherically symmetric-spacetimes. We avoid problems with the singularity by excising the region of the black hole interior to the apparent horizon. We use a second-order finite difference scheme to solve the equations. The resulting program is stable and convergent and will run forever without problems. We are able to observe quasi-normal ringing and power-law tails as well an interesting nonlinear feature.Comment: 16 pages, 26 figures, RevTex, to appear in Phys. Rev.

    Black Hole Area in Brans-Dicke Theory

    Full text link
    We have shown that the dynamics of the scalar field ϕ(x)=G1(x)"\phi (x)= ``G^{-1}(x)" in Brans-Dicke theories of gravity makes the surface area of the black hole horizon {\it oscillatory} during its dynamical evolution. It explicitly explains why the area theorem does not hold in Brans-Dicke theory. However, we show that there exists a certain non-decreasing quantity defined on the event horizon which is proportional to the black hole entropy for the case of stationary solutions in Brans-Dicke theory. Some numerical simulations have been demonstrated for Oppenheimer-Snyder collapse in Brans-Dicke theory.Comment: 12 pages, latex, 5 figures, epsfig.sty, some statements clarified and two references added, to appear in Phys. Rev.

    What does a binary black hole merger look like?

    Get PDF
    We present a method of calculating the strong-field gravitational lensing caused by many analytic and numerical spacetimes. We use this procedure to calculate the distortion caused by isolated black holes and by numerically evolved black hole binaries. We produce both demonstrative images illustrating details of the spatial distortion and realistic images of collections of stars taking both lensing amplification and redshift into account. On large scales the lensing from inspiraling binaries resembles that of single black holes, but on small scales the resulting images show complex and in some cases self-similar structure across different angular scales.Comment: 10 pages, 12 figures. Supplementary images and movies can be found at http://www.black-holes.org/the-science-numerical-relativity/numerical-relativity/gravitational-lensin
    corecore