2,775 research outputs found
Feed-forward and its role in conditional linear optical quantum dynamics
Nonlinear optical quantum gates can be created probabilistically using only
single photon sources, linear optical elements and photon-number resolving
detectors. These gates are heralded but operate with probabilities much less
than one. There is currently a large gap between the performance of the known
circuits and the established upper bounds on their success probabilities. One
possibility for increasing the probability of success of such gates is
feed-forward, where one attempts to correct certain failure events that
occurred in the gate's operation. In this brief report we examine the role of
feed-forward in improving the success probability. In particular, for the
non-linear sign shift gate, we find that in a three-mode implementation with a
single round of feed-forward the optimal average probability of success is
approximately given by p= 0.272. This value is only slightly larger than the
general optimal success probability without feed-forward, P= 0.25.Comment: 4 pages, 3 eps figures, typeset using RevTex4, problems with figures
resolve
Simulating merging binary black holes with nearly extremal spins
Astrophysically realistic black holes may have spins that are nearly extremal
(i.e., close to 1 in dimensionless units). Numerical simulations of binary
black holes are important tools both for calibrating analytical templates for
gravitational-wave detection and for exploring the nonlinear dynamics of curved
spacetime. However, all previous simulations of binary-black-hole inspiral,
merger, and ringdown have been limited by an apparently insurmountable barrier:
the merging holes' spins could not exceed 0.93, which is still a long way from
the maximum possible value in terms of the physical effects of the spin. In
this paper, we surpass this limit for the first time, opening the way to
explore numerically the behavior of merging, nearly extremal black holes.
Specifically, using an improved initial-data method suitable for binary black
holes with nearly extremal spins, we simulate the inspiral (through 12.5
orbits), merger and ringdown of two equal-mass black holes with equal spins of
magnitude 0.95 antialigned with the orbital angular momentum.Comment: 4 pages, 2 figures, updated with version accepted for publication in
Phys. Rev. D, removed a plot that was incorrectly included at the end of the
article in version v
Hot entanglement in a simple dynamical model
How mixed can one component of a bi-partite system be initially and still
become entangled through interaction with a thermalized partner? We address
this question here. In particular, we consider the question of how mixed a
two-level system and a field mode may be such that free entanglement arises in
the course of the time evolution according to a Jaynes-Cummings type
interaction. We investigate the situation for which the two-level system is
initially in mixed state taken from a one-parameter set, whereas the field has
been prepared in an arbitrary thermal state. Depending on the particular choice
for the initial state and the initial temperature of the quantised field mode,
three cases can be distinguished: (i) free entanglement will be created
immediately, (ii) free entanglement will be generated, but only at a later time
different from zero, (iii) the partial transpose of the joint state remains
positive at all times. It will be demonstrated that increasing the initial
temperature of the field mode may cause the joint state to become distillable
during the time evolution, in contrast to a non-distillable state at lower
initial temperatures. We further assess the generated entanglement
quantitatively, by evaluating the logarithmic negativity numerically, and by
providing an analytical upper bound.Comment: 5 pages, 2 figures. Contribution to the proceedings of the
'International Conference on Quantum Information', Oviedo, July 13-18, 2002.
Discusses sudden changes of entanglement properties in a dynamical quantum
mode
Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes
BACKGROUND:
RNA interference (RNAi), which has facilitated functional characterization of mosquito neural development genes such as the axon guidance regulator semaphorin-1a (sema1a), could one day be applied as a new means of vector control. Saccharomyces cerevisiae (baker's yeast) may represent an effective interfering RNA expression system that could be used directly for delivery of RNA pesticides to mosquito larvae. Here we describe characterization of a yeast larvicide developed through bioengineering of S. cerevisiae to express a short hairpin RNA (shRNA) targeting a conserved site in mosquito sema1a genes.
RESULTS:
Experiments conducted on Aedes aegypti larvae demonstrated that the yeast larvicide effectively silences sema1a expression, generates severe neural defects, and induces high levels of larval mortality in laboratory, simulated-field, and semi-field experiments. The larvicide was also found to induce high levels of Aedes albopictus, Anopheles gambiae and Culex quinquefasciatus mortality.
CONCLUSIONS:
The results of these studies indicate that use of yeast interfering RNA larvicides targeting mosquito sema1a genes may represent a new biorational tool for mosquito control
What does a binary black hole merger look like?
We present a method of calculating the strong-field gravitational lensing
caused by many analytic and numerical spacetimes. We use this procedure to
calculate the distortion caused by isolated black holes and by numerically
evolved black hole binaries. We produce both demonstrative images illustrating
details of the spatial distortion and realistic images of collections of stars
taking both lensing amplification and redshift into account. On large scales
the lensing from inspiraling binaries resembles that of single black holes, but
on small scales the resulting images show complex and in some cases
self-similar structure across different angular scales.Comment: 10 pages, 12 figures. Supplementary images and movies can be found at
http://www.black-holes.org/the-science-numerical-relativity/numerical-relativity/gravitational-lensin
Black Hole Area in Brans-Dicke Theory
We have shown that the dynamics of the scalar field
in Brans-Dicke theories of gravity makes the surface area of the black hole
horizon {\it oscillatory} during its dynamical evolution. It explicitly
explains why the area theorem does not hold in Brans-Dicke theory. However, we
show that there exists a certain non-decreasing quantity defined on the event
horizon which is proportional to the black hole entropy for the case of
stationary solutions in Brans-Dicke theory. Some numerical simulations have
been demonstrated for Oppenheimer-Snyder collapse in Brans-Dicke theory.Comment: 12 pages, latex, 5 figures, epsfig.sty, some statements clarified and
two references added, to appear in Phys. Rev.
Direct Measurement of intermediate-range Casimir-Polder potentials
We present the first direct measurements of Casimir-Polder forces between
solid surfaces and atomic gases in the transition regime between the
electrostatic short-distance and the retarded long-distance limit. The
experimental method is based on ultracold ground-state Rb atoms that are
reflected from evanescent wave barriers at the surface of a dielectric glass
prism. Our novel approach does not require assumptions about the potential
shape. The experimental data confirm the theoretical prediction in the
transition regime.Comment: 4 pages, 3 figure
On choosing the start time of binary black hole ringdown
The final stage of a binary black hole merger is ringdown, in which the
system is described by a Kerr black hole with quasinormal mode perturbations.
It is far from straightforward to identify the time at which the ringdown
begins. Yet determining this time is important for precision tests of the
general theory of relativity that compare an observed signal with quasinormal
mode descriptions of the ringdown, such as tests of the no-hair theorem. We
present an algorithmic method to analyze the choice of ringdown start time in
the observed waveform. This method is based on determining how close the strong
field is to a Kerr black hole (Kerrness). Using numerical relativity
simulations, we characterize the Kerrness of the strong-field region close to
the black hole using a set of local, gauge-invariant geometric and algebraic
conditions that measure local isometry to Kerr. We produce a map that
associates each time in the gravitational waveform with a value of each of
these Kerrness measures; this map is produced by following outgoing null
characteristics from the strong and near-field regions to the wave zone. We
perform this analysis on a numerical relativity simulation with parameters
consistent with GW150914- the first gravitational wave detection. We find that
the choice of ringdown start time of after merger used in the
GW150914 study to test general relativity corresponds to a high dimensionless
perturbation amplitude of in the strong-field
region. This suggests that in higher signal-to-noise detections, one would need
to start analyzing the signal at a later time for studies that depend on the
validity of black hole perturbation theory.Comment: 23+4 pages, 22 figure
Testing the Accuracy and Stability of Spectral Methods in Numerical Relativity
The accuracy and stability of the Caltech-Cornell pseudospectral code is
evaluated using the KST representation of the Einstein evolution equations. The
basic "Mexico City Tests" widely adopted by the numerical relativity community
are adapted here for codes based on spectral methods. Exponential convergence
of the spectral code is established, apparently limited only by numerical
roundoff error. A general expression for the growth of errors due to finite
machine precision is derived, and it is shown that this limit is achieved here
for the linear plane-wave test. All of these tests are found to be stable,
except for simulations of high amplitude gauge waves with nontrivial shift.Comment: Final version, as published in Phys. Rev. D; 13 pages, 16 figure
- …
