10,752 research outputs found

    Calculation of shock-separated turbulent boundary layers

    Get PDF
    Numerical solutions of the complete, time-averaged conservation equations using several eddy-viscosity models for the Reynolds shear stress to close the equations are compared with experimental measurements in a compressible, turbulent separated flow. An efficient time-splitting, explicit difference scheme was used to solve the two-dimensional conservation equations. The experiment used for comparison was a turbulent boundary layer that was separated by an incident shock wave in a Mach 2.93 flow with a unit Reynolds number of 5.7 x 10 to the seventh power m. Comparisons of predicted and experimental values of surface pressure, shear stress along the wall, and velocity profiles are shown. One of the tested eddy-viscosity models which allows the shear stress to be out of equilibrium with the mean flow produces substantially better agreement with the experimental measurements than the simpler models. A tool is thereby provided for inferring additional information about the flow, such as static pressures in the stream, which might not be directly obtainable from experiments

    Evidence for a ν=5/2\nu=5/2 Fractional Quantum Hall Nematic State in Parallel Magnetic Fields

    Full text link
    We report magneto-transport measurements for the fractional quantum Hall state at filling factor ν=\nu= 5/2 as a function of applied parallel magnetic field (B∣∣B_{||}). As B∣∣B_{||} is increased, the 5/2 state becomes increasingly anisotropic, with the in-plane resistance along the direction of B∣∣B_{||} becoming more than 30 times larger than in the perpendicular direction. Remarkably, the resistance anisotropy ratio remains constant over a relatively large temperature range, yielding an energy gap which is the same for both directions. Our data are qualitatively consistent with a fractional quantum Hall \textit{nematic} phase

    Observation of An Anisotropic Wigner Crystal

    Full text link
    We report a new correlated phase of two-dimensional charged carriers in high magnetic fields, manifested by an anisotropic insulating behavior at low temperatures. It appears near Landau level filling factor ν=1/2\nu=1/2 in hole systems confined to wide GaAs quantum wells when the sample is tilted in magnetic field to an intermediate angle. The parallel field component (B∣∣B_{||}) leads to a crossing of the lowest two Landau levels, and an elongated hole wavefunction in the direction of B∣∣B_{||}. Under these conditions, the in-plane resistance exhibits an insulating behavior, with the resistance along B∣∣B_{||} more than 10 times smaller than the resistance perpendicular to B∣∣B_{||}. We interpret this anisotropic insulating phase as a two-component, striped Wigner crystal

    Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs

    Get PDF
    Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi's elliptic functions. For systems with parameters, the algorithms determine the conditions on the parameters so that the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi's sn or cn functions. Examples illustrate key steps of the algorithms. The new algorithms are implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute new special solutions of nonlinear PDEs. Use of the package, implementation issues, scope, limitations, and future extensions of the software are addressed. A survey is given of related algorithms and symbolic software to compute exact solutions of nonlinear differential equations.Comment: 39 pages. Software available from Willy Hereman's home page at http://www.mines.edu/fs_home/whereman

    Multicomponent fractional quantum Hall states with subband and spin degrees of freedom

    Full text link
    In wide GaAs quantum wells where two electric subbands are occupied we apply a parallel magnetic field or increase the electron density to cause a crossing of the two N=0N=0 Landau levels of these subbands and with opposite spins. Near the crossing, the fractional quantum Hall states in the filling factor range 1<ν<31<\nu<3 exhibit a remarkable sequence of pseudospin polarization transitions resulting from the interplay between the spin and subband degrees of freedom. The field positions of the transitions yield a new and quantitative measure of the composite Fermions' discrete energy level separations. Surprisingly, the separations are smaller when the electrons have higher spin-polarization

    Impact of disorder on the 5/2 fractional quantum Hall state

    Full text link
    We compare the energy gap of the \nu=5/2 fractional quantum Hall effect state obtained in conventional high mobility modulation doped quantum well samples with those obtained in high quality GaAs transistors (heterojunction insulated gate field-effect transistors). We are able to identify the different roles that long range and short range disorders play in the 5/2 state and observe that the long range potential fluctuations are more detrimental to the strength of the 5/2 state than short-range potential disorder.Comment: PRL 106, 206806 (2011

    Anisotropic composite fermions and fractional quantum Hall effect

    Full text link
    We study the role of anisotropy on the transport properties of composite fermions near Landau level filling factor ν=1/2\nu=1/2 in two-dimensional holes confined to a GaAs quantum well. By applying a parallel magnetic field, we tune the composite fermion Fermi sea anisotropy and monitor the relative change of the transport scattering time at ν=1/2\nu=1/2 along the principal directions. Interpreted in a simple Drude model, our results suggest that the scattering time is longer along the longitudinal direction of the composite fermion Fermi sea. Furthermore, the measured energy gap for the fractional quantum Hall state at ν=2/3\nu=2/3 decreases when anisotropy becomes significant. The decrease, however, might partly stem from the charge distribution becoming bilayer-like at very large parallel magnetic fields
    • …
    corecore