515 research outputs found

    Relation between TMAOase activity and content of formaldehyde in fillet minces and bellyflap minces from gadoid fishes

    Get PDF
    Minced fish is a significant component of a number of frozen fishery products like fish fingers, cakes and patties. Predominately minced fish is produced from gadoid species (Alaska pollack, cod, saithe, hake and others) possessing the enzyme trimethylamine oxide demethylase (TMAOase, E.C. 4.1.2.32) (Rehbein and Schreiber 1984). TMAOase catalyses the degradation of trimethylamine oxide (TMAO) to formaldehyde (FA) and dimethylamine (DMA), preferentially during frozen storage of products (Hultin 1992). In most gadoid species light muscle contains only low activity of TMAOase, the activity of red muscle and bellyflaps being somewhat higher. In contrast, the TMAOase activity in blood, kidney and other tissues, residues of which may contaminate minced fish flesh, may be higher for several orders of magnitude (Rehbein and Schreiber 1984)

    Entanglement of macroscopic test masses and the Standard Quantum Limit in laser interferometry

    Get PDF
    We show that the generation of entanglement of two heavily macroscopic mirrors with masses of up to several kilograms are feasible with state of the art techniques of high-precision laser interferometry. The basis of such a demonstration would be a Michelson interferometer with suspended mirrors and simultaneous homodyne detections at both interferometer output ports. We present the connection between the generation of entanglement and the Standard Quantum Limit (SQL) for a free mass. The SQL is a well-known reference limit in operating interferometers for gravitational-wave detection and provides a measure of when macroscopic entanglement can be observed in the presence of realistic decoherence processes

    Tensile Overload and Stress Intensity Shielding Investigations by Ultrasound

    Get PDF
    Growth of a fatigue crack is modified according to the development of contacts between the crack faces [1,2] creating shielding, thus canceling a portion of the crack driving force. These contacts develop through a number of mechanisms, including plastic deformation, sliding of the faces with respect to each other and the collection of debris such as oxide particles [3]. Compressive stresses are created on either side of the partially contacting crack faces resulting in opening loads that must be overcome in order to apply a driving force at the crack tip. In this way, the crack tip is shielded from a portion of the applied load, thus creating the need for modification [1] of the applied stress intensity range from ΔK = KImax − KImin to ΔKeff = KImax − KIsh. Determination of the contact size and density in the region of closure from ultrasonic transmission and diffraction experiments [4] has allowed estimation of the magnitude of Kish on a crack grown under constant ΔK conditions. The calculation has since [5] been extended to fatigue cracks grown with a tensile overload block. The calculation was also successful in predicting the growth rate of the crack after reinitiation had occurred. This paper reports the further extension to the effects of a variable ΔK on fatigue crack growth. In addition, this paper presents preliminary results on detection of the tightly closed crack extension present during the growth retardation period after application of a tensile overload as well as an observation of the crack surface during reinitiation of growth that presents some interesting questions

    Characterization of Microstructural Effects on Fatigue Crack Closure

    Get PDF
    The growth of a fatigue crack is modified by the development of contacts between the crack faces1,2creating shielding and thus canceling a portion of the applied load. These contacts develop through a number of mechanisms, including plastic deformation, sliding of the faces with respect to each other and the creation and collection of debris such as oxide particles3. Compressive stresses are created on either side of the partially contacting crack faces resulting in opening loads that must be overcome in order to apply a driving force to the crack tip for growth. In this way, the crack tip is shielded from a portion of the applied load, thus creating the need for modification1 of the applied stress intensity range from ΔK = KImax — KImin to ΔK = KImax — KIsh. Determination of the contact size and density in the region of closure from ultrasonic transmission and diffraction experiments4has allowed estimation of the magnitude of KIsh on a crack grown under constant ΔK conditions. The calculation has since5 been extended to fatigue cracks grown with a tensile overload block. The calculation was also successful in predicting the growth rate of the crack after reinitiation had occurred. This paper reports the results of attempts to define the amount of retardation remaining before reinitiation of crack growth in terms of the parameters used by the distributed spring model

    Absolute frequency measurement of the magnesium intercombination transition 1S03P1^1S_0 \to ^3P_1

    Full text link
    We report on a frequency measurement of the (3s2)1S0(3s3p)3P1(3s^2)^1S_0\to(3s3p)^3P_1 clock transition of 24^{24}Mg on a thermal atomic beam. The intercombination transition has been referenced to a portable primary Cs frequency standard with the help of a femtosecond fiber laser frequency comb. The achieved uncertainty is 2.5×10122.5\times10^{-12} which corresponds to an increase in accuracy of six orders of magnitude compared to previous results. The measured frequency value permits the calculation of several other optical transitions from 1S0^1S_0 to the 3PJ^3P_J-level system for 24^{24}Mg, 25^{25}Mg and 26^{26}Mg. We describe in detail the components of our optical frequency standard like the stabilized spectroscopy laser, the atomic beam apparatus used for Ramsey-Bord\'e interferometry and the frequency comb generator and discuss the uncertainty contributions to our measurement including the first and second order Doppler effect. An upper limit of 3×10133\times10^{-13} in one second for the short term instability of our optical frequency standard was determined by comparison with a GPS disciplined quartz oscillator.Comment: 8 pages, 8 figure

    An ellipsoidal mirror for focusing neutral atomic and molecular beams

    Get PDF
    Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope

    An ellipsoidal mirror for focusing neutral atomic and molecular beams

    Get PDF
    Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope

    Material Properties of Aged and Unaged Inconel 718 as Determined from Nondestructive and Destructive Tests

    Get PDF
    Most if not all materials undergo deterioration of their mechanical properties during service through one mechanism or another with eventual failure occurring due to this deterioration. As structures remain in service then, it becomes increasingly important that periodic evaluation of the material properties be accomplished in order to allow repair or replacement of structural members before catastrophic failure occurs. A group of Nickel-based alloys, collectively known as Inconel, is such a structurally important material. Inconel 718, in particular, shows signs of a “thermal embrittlement” as a function of operating temperature and time exposed to this temperature

    Elucidating determinants of aerosol composition through particle-type-based receptor modeling

    Get PDF
    An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources was reflected through three factors: two Biomass Burning factors and a highly chemically processed Long Range Transport factor. The Biomass Burning factors were separated by PMF due to differences in chemical processing which were in part elucidated by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique range of temporal variability, enabling the elucidation of the determinants of aerosol chemical composition, including source emissions, chemical processing, and transport, at the Canada-US border. This paper presents the first study to elucidate the coupled influences of these determinants on temporal variability in aerosol chemical composition using single particle-type-based receptor modelling
    corecore