483 research outputs found

    Semi-Insulating Polysilicon Hetero- and Isotype Junctions on Silicon

    Get PDF
    The effects of nitrogen trifluorideinthe gas stream during deposition of semi-insulating polysilicon (SIPOS) on the electrical characteristics of undoped (SIPSO)/p-Si, and n+-SIPOS/n-Si isotype junctions were investigated. The current-voltage characteristics of undoped SIPOS/p-Si heterojunctions exhibit a strong dependence on the oxygen content of the SIPOS film and depart from a hyperbolic sine behavior as the refractive index of the SIPOS increases.. The addition of nitrogen trifluoride decreases the current density of these undoped SIPOS/p-Si heterojunctions due presumably to the oxidation/hydrolysis of SiF species intoSiO2. The n+-SIPOS formed a rectifying isotype junction o n-Si. The forward current voltage characteristics exhibit two distinct activation energies separated by a kink in the forward semi-logarithmic characteristics; one below the cut-in voltage and one above the cut-in voltage. The two activation energies result from the presence of interface states in the structures. However, the forward current-voltage characteristics of the fluorinated SIPOS isotype junctions exhibit no kink and only a single activation energy due, presumably, to hydrogen passivating the interfacial traps during the hydrolysis process

    Synthesis and interaction of thiazolo [2, 3-a] isoquinoline analog with DNA

    Get PDF
    569-573A reaction between 1-(furan-2-yl)-3,4-dihydroisoquinoline and thioglycolic acid using N,N-Dicyclohexylcarbodiimide at 0−5 °C has given 10b-(furan-2-yl)-5,6-dihydro-2H-thiazolo[2,3-a]isoquinolin-3(10bH)-one [FUIQTGA]. The interaction between FUIQTGA and DNA has been studied using UV-visible spectroscopy, fluorescence and circular dichroism techniques. Static quenching mechanism is observed from fluorescence measurements of interaction between FUIQTGA and DNA. Circular dichroism reveals the minor groove binding mode between FUIQTGA and DNA

    Multisite Microprobes for Electrochemical Recordings in Biological Dynamics

    Get PDF
    For over 30 years, techniques have been developed that allow for the microscale (10-30 /mum) measurement of chemical signals with high temporal resolution (1-200 Hz). Such measurements, called in vivo electrochemical recordings, allow for the direct determination of neurotransmitter molecules and related compounds in biological systems. Multiple recordings, simultaneously performed at different, closely spaced, well defined locations throughout a three-dimensional tissue volume in the brain, are of interest in neuroscience. Developments in microelectronic techniques enable the fabrication of multi-electrode microprobes for recording extracellular action potentials generated by individual neurons simultaneously. A high-yield microfabrication process has been successfully developed for the fabrication of a novel semiconductor based, four-site silicon microprobe that involves a three-mask process and standard UV photolithography. A plasma process has been developed for dry etching of the gold electrodes and conducting lines. The electrochemical behavior of the microprobe is investigated by a high-speed computer-based in vitro electrochemical recording system. The electrochemical signals are measured at 5 Hz and varying gain. It is found that a selectivity of over 500:1 is achieved, and the signal to noise ratio of the recorded signal is particularly suitable for in vivo recordings

    Synthesis of substituted benzo[e][1,3]oxazino analogs

    Get PDF
    325-327A synthesis of substituted benzo[e][1,3]oxazin-4-one analogs has been carried out by two methods. One of the common procedures involves refluxing in situ generated imine with salicylic acid while other method involves one-pot three component condensation reaction between aldehyde, amine and salicylic acid using DCC. The synthesized compounds have been characterized by IR, 1H and 13C NMR spectroscopy. Melting points reported are uncorrected

    The New Mexico State University Satellite (NMSUSat) Mission

    Get PDF
    The New Mexico State University Satellite (NMSUSat) is part of the University Nanosat 3 program managed by the Air Force Research Laboratory and it is being developed at New Mexico State University. The planned Science Mission for the satellite is to perform Near Ultra Violet emission intensity measurements of the earth\u27s upper atmosphere over the night side of the earth. The Engineering Mission is to demonstrate techniques for distributed data relaying over the Internet and to conduct an energy storage experiment to assess the operational characteristics of double layer capacitors. The Educational Mission of the program to assist in the further development of the aerospace engineering concentration area in the College of Engineering and to develop multi-disciplinary capstone and design classes for students in engineering departments, computer science, and the engineering physics program. This paper will discuss the preliminary design for the satellite components and how the mission segments will be worked among the participating departments at New Mexico State University

    Synthesis and interaction of thiazolo [2, 3-a] isoquinoline analog with DNA

    Get PDF
    A reaction between 1-(furan-2-yl)-3,4-dihydroisoquinoline and thioglycolic acid using DCC at 00-50C will give 10b-(furan-2-yl)-5,6-dihydro-2H-thiazolo[2,3-a]isoquinolin-3(10bH)-one [FUIQTGA]. The interaction between FUIQTGA and DNA was studied using UV Visible spectroscopy, fluorescence and Circular Dichroism (CD) techniques. Static quenching mechanism was observed from fluorescence measurements of interaction between FUIQTGA and DNA.  Circular Dichroism reveals the minor groove binding mode between FUIQTGA and DNA

    RpaA Regulates the Accumulation of Monomeric Photosystem I and PsbA under High Light Conditions in Synechocystis sp PCC 6803

    Get PDF
    The response regulator RpaA was examined by targeted mutagenesis under high light conditions in Synechocystis sp. PCC 6803. A significant reduction in chlorophyll fluorescence from photosystem I at 77 K was observed in the RpaA mutant cells under high light conditions. Interestingly, the chlorophyll fluorescence emission from the photosystem I trimers at 77 K are similar to that of the wild type, while the chlorophyll fluorescence from the photosystem I monomers was at a much lower level in the mutant than in the wild type under high light conditions. The RpaA inactivation resulted in a dramatic reduction in the monomeric photosystem I and the D1 protein but not the CP47 content. However, there is no significant difference in the transcript levels of psaA or psbA or other genes examined, most of which are involved in photosynthesis, pigment biosynthesis, or stress responses. Under high light conditions, the growth of the mutant was affected, and both the chlorophyll content and the whole-chain oxygen evolution capability of the mutant were found to be significantly lower than those of the wild type, respectively. We propose that RpaA regulates the accumulation of the monomeric photosystem I and the D1 protein under high light conditions. This is the first report demonstrating that inactivation of a stress response regulator has specifically reduced the monomeric photosystem I. It suggests that PS I monomers and PS I trimers can be regulated independently for acclimation of cells to high light stress.The response regulator RpaA was examined by targeted mutagenesis under high light conditions in Synechocystis sp. PCC 6803. A significant reduction in chlorophyll fluorescence from photosystem I at 77 K was observed in the RpaA mutant cells under high light conditions. Interestingly, the chlorophyll fluorescence emission from the photosystem I trimers at 77 K are similar to that of the wild type, while the chlorophyll fluorescence from the photosystem I monomers was at a much lower level in the mutant than in the wild type under high light conditions. The RpaA inactivation resulted in a dramatic reduction in the monomeric photosystem I and the D1 protein but not the CP47 content. However, there is no significant difference in the transcript levels of psaA or psbA or other genes examined, most of which are involved in photosynthesis, pigment biosynthesis, or stress responses. Under high light conditions, the growth of the mutant was affected, and both the chlorophyll content and the whole-chain oxygen evolution capability of the mutant were found to be significantly lower than those of the wild type, respectively. We propose that RpaA regulates the accumulation of the monomeric photosystem I and the D1 protein under high light conditions. This is the first report demonstrating that inactivation of a stress response regulator has specifically reduced the monomeric photosystem I. It suggests that PS I monomers and PS I trimers can be regulated independently for acclimation of cells to high light stress

    Blind docking of 4-Amino-7-Chloroquinoline analogs as potential dengue virus protease inhibitor using CB Dock a web server

    Get PDF
    Currently, there is no approved drug to combat dengue. Various quinoline derivatives are known for potential antimalarial, antiviral activities, etc. In the present work docking between 4-Amino-7-Chloroquinoline analogs was performed with dengue virus NS2B/NS3 protease using CB dock, a web server. Lys74, Ile165, Val147, Asn152, Asn167, Trp83 and Leu149 amino acid residues were found to be in contact with designed 4-Amino-7-Chloroquinoline analogs. Different modes of binding like hydrogen bonding, hydrophobic interactions, etc with designed compounds improve potential anti-dengue characteristics in silico. ADME results are in acceptable range
    corecore