5,450 research outputs found

    A Comparison of Three Curve Intersection Algorithms

    Get PDF
    An empirical comparison is made between three algorithms for computing the points of intersection of two planar Bezier curves. The algorithms compared are: the well known Bezier subdivision algorithm, which is discussed in Lane 80; a subdivision algorithm based on interval analysis due to Koparkar and Mudur; and an algorithm due to Sederberg, Anderson and Goldman which reduces the problem to one of finding the roots of a univariate polynomial. The details of these three algorithms are presented in their respective references

    Heegaard diagrams and surgery descriptions for twisted face-pairing 3-manifolds

    Full text link
    The twisted face-pairing construction of our earlier papers gives an efficient way of generating, mechanically and with little effort, myriads of relatively simple face-pairing descriptions of interesting closed 3-manifolds. The corresponding description in terms of surgery, or Dehn-filling, reveals the twist construction as a carefully organized surgery on a link. In this paper, we work out the relationship between the twisted face-pairing description of closed 3-manifolds and the more common descriptions by surgery and Heegaard diagrams. We show that all Heegaard diagrams have a natural decomposition into subdiagrams called Heegaard cylinders, each of which has a natural shape given by the ratio of two positive integers. We characterize the Heegaard diagrams arising naturally from a twisted face-pairing description as those whose Heegaard cylinders all have integral shape. This characterization allows us to use the Kirby calculus and standard tools of Heegaard theory to attack the problem of finding which closed, orientable 3-manifolds have a twisted face-pairing description.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol3/agt-3-10.abs.htm

    Correlation function algebra for inhomogeneous fluids

    Full text link
    We consider variational (density functional) models of fluids confined in parallel-plate geometries (with walls situated in the planes z=0 and z=L respectively) and focus on the structure of the pair correlation function G(r_1,r_2). We show that for local variational models there exist two non-trivial identities relating both the transverse Fourier transform G(z_\mu, z_\nu;q) and the zeroth moment G_0(z_\mu,z_\nu) at different positions z_1, z_2 and z_3. These relations form an algebra which severely restricts the possible form of the function G_0(z_\mu,z_\nu). For the common situations in which the equilibrium one-body (magnetization/number density) profile m_0(z) exhibits an odd or even reflection symmetry in the z=L/2 plane the algebra simplifies considerably and is used to relate the correlation function to the finite-size excess free-energy \gamma(L). We rederive non-trivial scaling expressions for the finite-size contribution to the free-energy at bulk criticality and for systems where large scale interfacial fluctuations are present. Extensions to non-planar geometries are also considered.Comment: 15 pages, RevTex, 4 eps figures. To appear in J.Phys.Condens.Matte

    Derivation of a Non-Local Interfacial Hamiltonian for Short-Ranged Wetting II: General Diagrammatic Structure

    Full text link
    In our first paper, we showed how a non-local effective Hamiltionian for short-ranged wetting may be derived from an underlying Landau-Ginzburg-Wilson model. Here, we combine the Green's function method with standard perturbation theory to determine the general diagrammatic form of the binding potential functional beyond the double-parabola approximation for the Landau-Ginzburg-Wilson bulk potential. The main influence of cubic and quartic interactions is simply to alter the coefficients of the double parabola-like zig-zag diagrams and also to introduce curvature and tube-interaction corrections (also represented diagrammatically), which are of minor importance. Non-locality generates effective long-ranged many-body interfacial interactions due to the reflection of tube-like fluctuations from the wall. Alternative wall boundary conditions (with a surface field and enhancement) and the diagrammatic description of tricritical wetting are also discussed.Comment: (14 pages, 2 figures) Submitted J. Phys. Condens. Matte
    corecore