153 research outputs found

    Real-time and Multichannel Measurement of Contractility of hiPSC-Derived 3D Skeletal Muscle using Fiber Optics-Based Sensing

    Get PDF
    As the field of cardiac and skeletal muscle tissue engineering expands, so does the need for accurate and reliable systems to generate in vitro 3D tissues and analyze their functional properties. In this study, the Cuore is introduced, a system that integrates sensors based on optical fibers and uses the principle of light interferometry to detect the contraction of 3D Tissue Engineered Skeletal Muscles (3D-TESMs). The technology employed in the Cuore allows for reproducible and multichannel force measurements down to a nano-Newtons resolution while maintaining sterility and permitting continuous non-invasive recording within and outside standard tissue culture incubators. Thanks to the integrated electrodes for electrical pulse stimulation (EPS), 3D-TESMs generated from three independent hiPSC-derived myogenic progenitors (MPs) lines are stimulated and the contractility is recorded over the course of a week. Through the modulation of different EPS parameters, the optimal combination to induce the 3D-TESMs in producing fully fused tetani without causing damage is determined. Furthermore, 3D-TESMs from different lines exhibit characteristic signatures of spontaneous contractility and response to caffeine, verapamil, and the β-agonist clenbuterol. The ease of use, high sensitivity, and the integrated electrodes and sensors make the Cuore an ideal technology to investigate the biology of contractile tissues and their response to drugs.</p

    Exposure to low-dose radiation and the risk of breast cancer among women with a familial or genetic predisposition:a meta-analysis

    Get PDF
    Women with familial or genetic aggregation of breast cancer are offered screening outside the population screening programme. However, the possible benefit of mammography screening could be reduced due to the risk of radiation-induced tumours. A systematic search was conducted addressing the question of how low-dose radiation exposure affects breast cancer risk among high-risk women. A systematic search was conducted for articles addressing breast cancer, mammography screening, radiation and high-risk women. Effects of low-dose radiation on breast cancer risk were presented in terms of pooled odds ratios (OR). Of 127 articles found, 7 were selected for the meta-analysis. Pooled OR revealed an increased risk of breast cancer among high-risk women due to low-dose radiation exposure (OR = 1.3, 95% CI: 0.9- 1.8). Exposure before age 20 (OR = 2.0, 95% CI: 1.3-3.1) or a mean of a parts per thousand yen5 exposures (OR = 1.8, 95% CI: 1.1-3.0) was significantly associated with a higher radiation-induced breast cancer risk. Low-dose radiation increases breast cancer risk among high-risk women. When using low-dose radiation among high-risk women, a careful approach is needed, by means of reducing repeated exposure, avoidance of exposure at a younger age and using non-ionising screening techniques

    Cost-effectiveness of stereotactic large-core needle biopsy for nonpalpable breast lesions compared to open-breast biopsy

    Get PDF
    This paper demonstrates that the introduction of large-core needle biopsy (LCNB) replacing needle-localised breast biopsy (NLBB) for nonpalpable (screen-detected) breast lesions could result in substantial cost savings at the expense of a possible slight increase in breast cancer mortality. The cost-effectiveness of LCNB and NLBB was estimated using a microsimulation model. The sensitivity of LCNB (0.97) and resource use and costs of LCNB and NLBB were derived from a multicentre consecutive cohort study among 973 women who consented in getting LCNB and NLBB, if LCNB was negative. Sensitivity analyses were performed. Replacing NLBB with LCNB would result in approximately six more breast cancer deaths per year (in a target population of 2.1 million women), or in 1000 extra life-years lost from breast cancer (effect over 100 years). The total costs of management of breast cancer (3% discounted) are estimated at £4676 million with NLBB; introducing LCNB would save £13 million. The incremental cost-effectiveness ratio of continued NLBB vs LCNB would be £12 482 per additional life-year gained (3% discounted); incremental costs range from £-21 687 (low threshold for breast biopsy) to £74 378 (high sensitivity of LCNB)

    Lentiviral gene therapy with IGF2-tagged GAA normalizes the skeletal muscle proteome in murine Pompe disease

    Get PDF
    Pompe disease is a lysosomal storage disorder caused by deficiency of acid alpha-glucosidase (GAA), resulting in glycogen accumulation with profound pathology in skeletal muscle. We recently developed an optimized form of lentiviral gene therapy for Pompe disease in which a codon-optimized version of the GAA transgene (LV-GAAco) was fused to an insulin-like growth factor 2 (IGF2) peptide (LV-IGF2.GAAco), to promote cellular uptake via the cation-independent mannose-6-phosphate/IGF2 receptor. Lentiviral gene therapy with LV-IGF2.GAAco showed superior efficacy in heart, skeletal muscle, and brain of Gaa−/− mice compared to gene therapy with untagged LV-GAAco. Here, we used quantitative mass spectrometry using TMT labeling to analyze the muscle proteome and the response to gene therapy in Gaa−/− mice. We found that muscle of Gaa−/− mice displayed altered levels of proteins including those with functions in the CLEAR signaling pathway, autophagy, cytoplasmic glycogen metabolism, calcium homeostasis, redox signaling, mitochondrial function, fatty acid transport, muscle contraction, cytoskeletal organization, phagosome maturation, and inflammation. Gene therapy with LV-GAAco resulted in partial correction of the muscle proteome, while gene therapy with LV-IGF2.GAAco resulted in a near-complete restoration to wild type levels without inducing extra proteomic changes, supporting clinical development of lentiviral gene therapy for Pompe disease. Significance: Lysosomal glycogen accumulation is the primary cause of Pompe disease, and leads to a cascade of pathological events in cardiac and skeletal muscle and in the central nervous system. In this study, we identified the proteomic changes that are caused by Pompe disease in skeletal muscle of a mouse model. We showed that lentiviral gene therapy with LV-IGF2.GAAco nearly completely corrects disease-associated proteomic changes. This study supports the future clinical development of lentiviral gene therapy with LV-IGF2.GAAco as a new treatment option for Pompe disease.</p

    The cost-effectiveness of digital breast tomosynthesis in a population breast cancer screening program

    Get PDF
    OBJECTIVES: To evaluate at which sensitivity digital breast tomosynthesis (DBT) would become cost-effective compared to digital mammography (DM) in a population breast cancer screening program, given a constant estimate of specificity. METHODS: In a microsimulation model, the cost-effectiveness of biennial screening for women aged 50-75 was simulated for three scenarios: DBT for women with dense breasts and DM for women with fatty breasts (scenario 1), DBT for the whole population (scenario 2) or maintaining DM screening (reference). For DM, sensitivity was varied depending on breast density from 65 to 87%, and for DBT from 65 to 100%. The specificity was set at 96.5% for both DM and DBT. Direct medical costs were considered, including screening, biopsy and treatment costs. Scenarios were considered to be cost-effective if the incremental cost-effectiveness ratio (ICER) was below €20,000 per life year gain (LYG). RESULTS: For both scenarios, the ICER was more favourable at increasing DBT sensitivity. Compared with DM screening, 0.8-10.2% more LYGs were found when DBT sensitivity was at least 75% for scenario 1, and 4.7-18.7% when DBT sensitivity was at least 80% for scenario 2. At €96 per DBT, scenario 1 was cost-effective at a DBT sensitivity of at least 90%, and at least 95% for scenario 2. At €80 per DBT, these values decreased to 80% and 90%, respectively. CONCLUSION: DBT is more likely to be a cost-effective alternative to mammography in women with dense breasts. Whether DBT could be cost-effective in a general population highly depends on DBT costs. KEY POINTS: • DBT could be a cost-effective screening modality for women with dense breasts when its sensitivity is at least 90% at a maximum cost per screen of €96. • DBT has the potential to be cost-effective for screening all women when sensitivity is at least 90% at a maximum cost per screen of €80. • Whether DBT could be used as an alternative to mammography for screening all women is highly dependent on the cost of DBT per screen

    Highly contractile 3D tissue engineered skeletal muscles from human iPSCs reveal similarities with primary myoblast-derived tissues

    Get PDF
    Skeletal muscle research is transitioning toward 3D tissue engineered in vitro models reproducing muscle's native architecture and supporting measurement of functionality. Human induced pluripotent stem cells (hiPSCs) offer high yields of cells for differentiation. It has been difficult to differentiate high-quality, pure 3D muscle tissues from hiPSCs that show contractile properties comparable to primary myoblast-derived tissues. Here, we present a transgene-free method for the generation of purified, expandable myogenic progenitors (MPs) from hiPSCs grown under feeder-free conditions. We defined a protocol with optimal hydrogel and medium conditions that allowed production of highly contractile 3D tissue engineered skeletal muscles with forces similar to primary myoblast-derived tissues. Gene expression and proteomic analysis between hiPSC-derived and primary myoblast-derived 3D tissues revealed a similar expression profile of proteins involved in myogenic differentiation and sarcomere function. The protocol should be generally applicable for the study of personalized human skeletal muscle tissue in health and disease.</p

    Small Nuclear RNAs Encoded by Herpesvirus saimiri Upregulate the Expression of Genes Linked to T Cell Activation in Virally Transformed T Cells

    Get PDF
    SummarySeven small nuclear RNAs of the Sm class are encoded by Herpesvirus saimiri (HVS), a γ Herpesvirus that causes aggressive T cell leukemias and lymphomas in New World primates and efficiently transforms T cells in vitro [1–4]. The Herpesvirus saimiri U RNAs (HSURs) are the most abundant viral transcripts in HVS-transformed, latently infected T cells but are not required for viral replication or transformation in vitro [5]. We have compared marmoset T cells transformed with wild-type or a mutant HVS lacking the most highly conserved HSURs, HSURs 1 and 2. Microarray and Northern analyses reveal that HSUR 1 and 2 expression correlates with significant increases in a small number of host mRNAs, including the T cell-receptor β and γ chains, the T cell and natural killer (NK) cell-surface receptors CD52 and DAP10, and intracellular proteins—SKAP55, granulysin, and NKG7—linked to T cell and NK cell activation. Upregulation of three of these transcripts was rescued after transduction of deletion-mutant-HVS-transformed cells with a lentiviral vector carrying HSURs 1 and 2. These changes indicate an unexpected role for the HSURs in regulating a remarkably defined and physiologically relevant set of host targets involved in the activation of virally transformed T cells during latency

    Особенности деонтологии в сексологической практике

    Get PDF
    Описаны основные принципы врачебной этики в сексологической практике. Рассмотрены особенности взаимоотношений врача−сексолога и пациента. Подчеркивается, что выполнение врачом деонтологических принципов будет способствовать гармонизации семейно−сексуальных отношений.Basic principles of medical ethics in sexological practice are presented. The peculiarities of mutual relations of the doctor sexologist and the patient are discussed. It is emphasized that adherence of the doctor−sexologist of ethical principles will promote harmonization of family sexual relations
    corecore