48,756 research outputs found

    THEORETICAL STUDIES OF BILIPROTEIN CHROMOPHORES AND RELATED BILE PIGMENTS BY MOLECULAR ORBITAL AND RAMACHANDRAN TYPE CALCULATIONS

    Get PDF
    Ramachandran calculations have been used to gain insight into steric hindrance in bile pigments related to biliprotein chromophores. The high optical activity of denatured phycocyanin, as compared to phycoerythrin, has been related to the asymmetric substitution at ring A, which shifts the equilibrium towards the P-helical form of the chromophore. Geometric effects on the electronic structures and transitions have then been studied by molecular orbital calculations for several conjugation systems including the chromophores of phycocyanin. phytochrome P,, cations, cation radicals and tautomeric forms. For these different chromophores some general trends can be deduced. For instance, for a given change in the gross shape (e.g. either unfolding of the molecule from a cyclic-helical to a fully extended geometry, or upon out-of-plane twists of the pyrrole ring A) of the molecules under study, the predicted absorption spectra all change in a simikar way. Nonetheless, there are characteristic distinctions between the different n-systems, both in the transition energies and the charge distribution, which can be related to their known differences in spectroscopic properties and their reactivity

    Light pseudoscalar eta and H->eta eta decay in the simplest little Higgs mode

    Full text link
    The SU(3) simplest little Higgs model in its original framework without the so-called mu term inevitably involves a massless pseudoscalar boson eta, which is problematic for b-physics and cosmological axion limit. With the mu term introduced by hand, the eta boson acquires mass m_eta ~ mu, which can be lighter than half the Higgs boson mass in a large portion of the parameter space. In addition, the introduced mu term generates sizable coupling of H-eta-eta. The Higgs boson can dominantly decay into a pair of eta's especially when mH below the WW threshold. Another new decay channel of H->Z+eta can be dominant or compatible with H -> WW for mH above the Z+eta threshold. We show that the LEP bound on the Higgs boson mass is loosened to some extent due to this new H->eta eta decay channel as well as the reduced coupling of H-Z-Z. The Higgs boson mass bound falls to about 110 GeV for f=3-4 TeV. Since the eta boson decays mainly into a bb pair, H-> eta eta -> 4b and H-> Z eta -> Z bb open up other interesting search channels in the pursuit of the Higgs boson in the future experiments. We discuss on these issues.Comment: major modification considering the simplest little Higgs model with the mu ter

    Connections of activated hopping processes with the breakdown of the Stokes-Einstein relation and with aspects of dynamical heterogeneities

    Full text link
    We develop a new extended version of the mode-coupling theory (MCT) for glass transition, which incorporates activated hopping processes via the dynamical theory originally formulated to describe diffusion-jump processes in crystals. The dynamical-theory approach adapted here to glass-forming liquids treats hopping as arising from vibrational fluctuations in quasi-arrested state where particles are trapped inside their cages, and the hopping rate is formulated in terms of the Debye-Waller factors characterizing the structure of the quasi-arrested state. The resulting expression for the hopping rate takes an activated form, and the barrier height for the hopping is ``self-generated'' in the sense that it is present only in those states where the dynamics exhibits a well defined plateau. It is discussed how such a hopping rate can be incorporated into MCT so that the sharp nonergodic transition predicted by the idealized version of the theory is replaced by a rapid but smooth crossover. We then show that the developed theory accounts for the breakdown of the Stokes-Einstein relation observed in a variety of fragile glass formers. It is also demonstrated that characteristic features of dynamical heterogeneities revealed by recent computer simulations are reproduced by the theory. More specifically, a substantial increase of the non-Gaussian parameter, double-peak structure in the probability distribution of particle displacements, and the presence of a growing dynamic length scale are predicted by the extended MCT developed here, which the idealized version of the theory failed to reproduce. These results of the theory are demonstrated for a model of the Lennard-Jones system, and are compared with related computer-simulation results and experimental data.Comment: 13 pages, 5 figure

    Tunable Quantum Fluctuation-Controlled Coherent Spin Dynamics

    Full text link
    Temporal evolution of a macroscopic condensate of ultra cold atoms is usually driven by mean field potentials, either due to scattering between atoms or due to coupling to external fields; and coherent quantum dynamics have been observed in various cold-atom experiments. In this article, we report results of studies of a class of quantum spin dynamics which are purely driven by zero point quantum fluctuations of spin collective coordinates. Unlike the usual mean-field coherent dynamics, quantum fluctuation-controlled spin dynamics or QFCSD studied here are very sensitive to variation of quantum fluctuations and can be tuned by four to five order of magnitude using optical lattices. They have unique dependence on optical lattice potential depths and quadratic Zeeman fields. QFCSD can be potentially used to calibrate quantum fluctuations and investigate correlated fluctuations and various universal scaling properties near quantum critical points.Comment: 14 pages, 12 figures included; including detailed discussions on thermal effects, trapping potentials and spin exchange losses. (To appear in PRA

    Microstrip superconducting quantum interference device amplifiers with submicron Josephson junctions: enhanced gain at gigahertz frequencies

    Full text link
    We present measurements of an amplifier based on a dc superconducting quantum interference device (SQUID) with submicron Al-AlOx-Al Josephson junctions. The small junction size reduces their self-capacitance and allows for the use of relatively large resistive shunts while maintaining nonhysteretic operation. This leads to an enhancement of the SQUID transfer function compared to SQUIDs with micron-scale junctions. The device layout is modified from that of a conventional SQUID to allow for coupling signals into the amplifier with a substantial mutual inductance for a relatively short microstrip coil. Measurements at 310 mK exhibit gain of 32 dB at 1.55 GHz.Comment: Version with high resolution figures at: http://physics.syr.edu/~bplourde/bltp-publications.ht

    The observation of a positive magnetoresistance and close correlation among lattice, spin and charge around TC in antipervoskite SnCMn3

    Full text link
    The temperature dependences of magnetization, electrical transport, and thermal transport properties of antiperovskite compound SnCMn3 have been investigated systematically. A positive magnetoresistance (~11%) is observed around the ferrimagnetic-paramagnetic transition (TC ~ 280 K) in the field of 50 kOe, which can be attributed to the field-induced magnetic phase transition. The abnormalities of resistivity, Seebeck coefficient, normal Hall effect and thermal conductivity near TC are suggested to be associated with an abrupt reconstruction of electronic structure. Further, our results indicate an essential interaction among lattice, spin and charge degrees of freedom around TC. Such an interaction among various degrees of freedom associated with sudden phase transition is suggested to be characteristic of Mn-based antiperovskite compounds.Comment: 13 pages, 5 figure
    corecore