16,104 research outputs found

    Quantum Computing with an 'Always On' Heisenberg Interaction

    Get PDF
    Many promising ideas for quantum computing demand the experimental ability to directly switch 'on' and 'off' a physical coupling between the component qubits. This is typically the key difficulty in implementation, and precludes quantum computation in generic solid state systems, where interactions between the constituents are 'always on'. Here we show that quantum computation is possible in strongly coupled (Heisenberg) systems even when the interaction cannot be controlled. The modest ability of 'tuning' the transition energies of individual qubits proves to be sufficient, with a suitable encoding of the logical qubits, to generate universal quantum gates. Furthermore, by tuning the qubits collectively we provide a scheme with exceptional experimental simplicity: computations are controlled via a single 'switch' of only six settings. Our schemes are applicable to a wide range of physical implementations, from excitons and spins in quantum dots through to bulk magnets.Comment: 4 pages, 3 figs, 2 column format. To appear in PR

    Towards practical classical processing for the surface code: timing analysis

    Full text link
    Topological quantum error correction codes have high thresholds and are well suited to physical implementation. The minimum weight perfect matching algorithm can be used to efficiently handle errors in such codes. We perform a timing analysis of our current implementation of the minimum weight perfect matching algorithm. Our implementation performs the classical processing associated with an nxn lattice of qubits realizing a square surface code storing a single logical qubit of information in a fault-tolerant manner. We empirically demonstrate that our implementation requires only O(n^2) average time per round of error correction for code distances ranging from 4 to 512 and a range of depolarizing error rates. We also describe tests we have performed to verify that it always obtains a true minimum weight perfect matching.Comment: 13 pages, 13 figures, version accepted for publicatio

    The value of psychological flexibility: Examining psychological mechanisms underpinning a cognitive behavioural therapy intervention for burnout

    Get PDF
    Little is known of the mechanisms by which interventions for burnout work. Employees of a UK government department were randomly assigned to either a worksite group-based CBT intervention called Acceptance and Commitment Therapy (ACT; n=43), which aimed to increase participants' psychological flexibility, or a waiting list control group (n=57). The ACT group received three half-day sessions of training spread over two and a half months. Data were collected at baseline (T1), at the beginning of the second (T2) and third (T3) workshops, and at six months' follow up (T4). Consistent with ACT theory, analyses revealed that, in comparison to the control group, a significant increase in psychological flexibility from T2 to T3 in the ACT group mediated the subsequent T2 to T4 decrease in emotional exhaustion in that group. Consistent with a theory of emotional burnout development, this significant decrease in emotional exhaustion from T2 to T4 in the ACT group appeared to prevent the significant T3 to T4 increase in depersonalization seen in the control group. Strain also decreased from T2 to T3 in the ACT group only, but no mediator of that improvement was identified. Implications for theory and practice in the fields of ACT and emotional burnout are discussed

    Mindfulness and meditation in the workplace: An acceptance and commitment therapy approach

    Get PDF
    There is a wide-range and growing body of evidence that mental health and behavioural effectiveness are influenced more by how people interact with their thoughts and feelings than by their form (e.g., how negative they are) or frequency. Research has demonstrated this key finding in a wide-range of areas. For example, in chronic pain, psychosocial disability is predicted more by the experiential avoidance of pain than by the degree of pain (McCracken, 1998). A number of therapeutic approaches have been developed that share this key insight: distress tolerance (e.g., Brown, Lejuez, Kahler, & Strong, 2002; Schmidt, Richey, Cromer, & Buckner, 2007), thought suppression (e.g., Wenzlaff & Wegner, 2000), and mindfulness (Baer, 2003). It is also central to a number of the newer contextual cognitive behaviour therapy (CBT) approaches to treatment, such as mindfulness based cognitive therapy (MBCT; Segal, Williams, & Teasdale, 2001), dialectical behaviour therapy (DBT; Linehan, 1993), metacognitive therapy (Wells, 2000), and acceptance and commitment therapy (ACT; Hayes, Strosahl, & Wilson, 1999). The purpose of this chapter is to describe how ACT conceptualises mindfulness and tries to enhance it in the pursuit of promoting mental health and behavioural effectiveness (e.g., productivity at work). To this end, we discuss ACT’s key construct of psychological flexibility, which involves mindfulness, and how it has led to a somewhat different approach not only to conceptualising mindfulness, but also how we try to enhance it in the workplace. In so doing, we hope to show that whilst formal meditation practice is valued in ACT, it is only one strategy that is used to promote mindfulness, as well as psychological flexibility more generally

    Exponential complexity of an adiabatic algorithm for an NP-complete problem

    Full text link
    We prove an analytical expression for the size of the gap between the ground and the first excited state of quantum adiabatic algorithm for the 3-satisfiability, where the initial Hamiltonian is a projector on the subspace complementary to the ground state. For large problem sizes the gap decreases exponentially and as a consequence the required running time is also exponential.Comment: 5 pages, 2 figures; v3. published versio

    Asymmetric quantum error correction via code conversion

    Full text link
    In many physical systems it is expected that environmental decoherence will exhibit an asymmetry between dephasing and relaxation that may result in qubits experiencing discrete phase errors more frequently than discrete bit errors. In the presence of such an error asymmetry, an appropriately asymmetric quantum code - that is, a code that can correct more phase errors than bit errors - will be more efficient than a traditional, symmetric quantum code. Here we construct fault tolerant circuits to convert between an asymmetric subsystem code and a symmetric subsystem code. We show that, for a moderate error asymmetry, the failure rate of a logical circuit can be reduced by using a combined symmetric asymmetric system and that doing so does not preclude universality.Comment: 5 pages, 8 figures, presentation revised, figures and references adde

    Externally Dispersed Interferometry for Precision Radial Velocimetry

    Get PDF
    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic spectral comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. The moire pattern shifts in phase in response to a Doppler shift. Moire patterns are broader than the underlying spectral features and more easily survive spectrograph blurring and common distortions. Thus, the EDI technique allows lower resolution spectrographs having relaxed optical tolerances (and therefore higher throughput) to return high precision velocity measurements, which otherwise would be imprecise for the spectrograph alone.Comment: 7 Pages, White paper submitted to the AAAC Exoplanet Task Forc

    Simulation of Many-Body Fermi Systems on a Universal Quantum Computer

    Full text link
    We provide fast algorithms for simulating many body Fermi systems on a universal quantum computer. Both first and second quantized descriptions are considered, and the relative computational complexities are determined in each case. In order to accommodate fermions using a first quantized Hamiltonian, an efficient quantum algorithm for anti-symmetrization is given. Finally, a simulation of the Hubbard model is discussed in detail.Comment: Submitted 11/7/96 to Phys. Rev. Lett. 10 pages, 0 figure

    Effective mass theory of monolayer \delta-doping in the high-density limit

    Full text link
    Monolayer \delta-doped structures in silicon have attracted renewed interest with their recent incorporation into atomic-scale device fabrication strategies as source and drain electrodes and in-plane gates. Modeling the physics of \delta-doping at this scale proves challenging, however, due to the large computational overhead associated with ab initio and atomistic methods. Here, we develop an analytical theory based on an effective mass approximation. We specifically consider the Si:P materials system, and the limit of high donor density, which has been the subject of recent experiments. In this case, metallic behavior including screening tends to smooth out the local disorder potential associated with random dopant placement. While smooth potentials may be difficult to incorporate into microscopic, single-electron analyses, the problem is easily treated in the effective mass theory by means of a jellium approximation for the ionic charge. We then go beyond the analytic model, incorporating exchange and correlation effects within a simple numerical model. We argue that such an approach is appropriate for describing realistic, high-density, highly disordered devices, providing results comparable to density functional theory, but with greater intuitive appeal, and lower computational effort. We investigate valley coupling in these structures, finding that valley splitting in the low-lying \Gamma band grows much more quickly than the \Gamma-\Delta band splitting at high densities. We also find that many-body exchange and correlation corrections affect the valley splitting more strongly than they affect the band splitting

    Quantum Simulations on a Quantum Computer

    Get PDF
    We present a general scheme for performing a simulation of the dynamics of one quantum system using another. This scheme is used to experimentally simulate the dynamics of truncated quantum harmonic and anharmonic oscillators using nuclear magnetic resonance. We believe this to be the first explicit physical realization of such a simulation.Comment: 4 pages, 2 figures (\documentstyle[prl,aps,epsfig,amscd]{revtex}); to appear in Phys. Rev. Let
    • …
    corecore