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Many promising schemes for quantum comput-
ing (QC) involve switching ‘on’ and ‘off’ a physi-
cal coupling between qubits. This may prove ex-
tremely difficult to achieve experimentally. Here
we show that systems with a constant Heisenberg
coupling can be employed for QC if we actively
‘tune’ the transition energies of individual qubits.
Moreover we can collectively tune the qubits to
obtain an exceptionally simple scheme: compu-
tations are controlled via a single ‘switch’ of only
six settings. Our schemes are applicable to a wide
range of physical implementations, from excitons
and spins in quantum dots through to bulk mag-
nets.

Quantum computing could in principle be performed
by a one-dimensional array of simple systems, such as
single electron spins, coupled via the Heisenberg (‘ex-
change’) interaction [1, 2, 3]. Elegant schemes exist
whereby this interaction alone generates all the gates,
or elementary operations on qubits, required for compu-
tation [4, 5]. It is also known that it can suffice to control
the qubits collectively [6]. However, all these schemes re-
quire the experimentalist to control the magnitude of the
Heisenberg interaction - effectively to be able to switch
it ‘on’ and ‘off’[7]. A typical idea for achieving this is to
somehow dynamically manipulate the wavefunction over-
lap between neighboring qubits. This appears feasible,
but highly challenging. Recently Zhou et al.[8] have ex-
plored a possible means of avoiding this switching. They
observe that the Heisenberg interaction can be effectively
negated by inserting EPR spin pairs between the qubits
in a (necessarily) two-dimensional architecture. The ap-
proach is conceptually rather beautiful, but from a prac-
tical point of view it is complex in terms of the physical
arrangement of qubits, the initialization, and the steps
involved in generating gates. Here we take an entirely
different approach and demonstrate that an ‘always-on’
interaction can suffice even in a generic one-dimensional
array. Our gate procedure is very simple and can support
additional features in suitable systems: the entire device
can be controlled without local manipulation of any kind,
and the Zeno effect can be harnessed to reduce errors.

For convenience of exposition, we will use the terms
‘spin’ and ‘Zeeman energy’ to refer to our generic two-
state systems and their level splitting. Consider a linear
chain of N spins, with a Hamiltonian Ĥ = ĤZeeman+Ĥint
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FIG. 1: Strategies for implementing QC on a 1D chain. Blocks
represent individual spins and qubits are denoted by letters
T, U ..Z. Fixed Zeeman energies are denoted by A & B, tun-
able Zeeman energies by ǫi. Here we assume an independent
mechanism exists for single qubit gates. If these are much
faster than 1/J , then one simply adopts the trivial scheme
shown in (a). Qubits are placed on adjacent cells and will
suffer continuous phase gates with their neighbors, but tech-
niques developed for NMR QC[9] can be employed to actively
negate this via fast rotations. However universal single qubit
gates in solid state systems are usually slow[4] compared to
1/J . In this case we would choose to place qubits only on
alternate spins (b), with intervening spins in definite clas-
sical states. The Ising interaction is then entirely negated,
and two-qubit operations are achieved by ‘tuning’ a spin’s
Zeeman energy, as described in the text. Part (c) displays
data from a numerical analysis of the process: a gate on X
and Y is achieved by tuning ǫ2 in the nine spin section shown.
Plots show worst case defects over the 16 possible basis states.
Phase noise (not shown) was always smaller.

where:

ĤZeeman =

N
∑

i=1

Ei(t)σ̂
Z
i , Ĥint = J

N−1
∑

i=1

σ̂i.σ̂i+1.

Here h̄ = 1 and subscript i denotes an operator act-
ing in the subspace of the ith qubit. {σ̂X , σ̂Y , σ̂Z} are
the Pauli matrices, and σ̂ ≡ iσ̂X + jσ̂Y + kσ̂Z . Zee-
man energies Ei may vary with time, but the interaction
couples all nearest-neighbors with a common magnitude
and is constant. We exploit the well-known observation
that when the Zeeman energies vary to the extent that
|Ei−Ei+1| ≫ J , then the interaction tends to an effective

Ising form [10]: Ĥint ≈ J
∑

σ̂Z
i σ̂Z

i+1.
The choice of scheme for performing QC on such sys-

tems depends on the available experimental abilities:
(1) Ability for universal single qubit gates. Sup-

pose that a mechanism exists whereby general rotations
of individual spins can be performed (essentially the same
physical starting point assumed by Zhou et al[8]). If such
rotations are extremely fast, then there is an immedi-
ate solution (Fig. 1a). Alternatively, Fig. 1b shows
the approach when fast tuning of Zeeman energies is
possible[11], but the additional manipulation(s) used to
compose universal single qubit gates are not rapid. We
separate the qubits to negate their continuous residual
Ising interaction; a two-qubit gate must then involve tem-
porarily altering the pattern of Zeeman energies. Con-
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sider a section of the array with the initial Zeeman pat-
tern BABAB and containing two qubits represented by
the states of the A spins (as the five leftmost spins in Fig
1b). Referring to these spins by the numbers 1..5, assume
that the outer spins 1 and 5 are in state | ↑〉, and that
the central spin 3 is | ↓〉. We will show that a gate can
be achieved by tuning only the Zeeman energy of spin 3,
which we will denote ǫ(t). Since the Zeeman energies of
spins 1 and 2 will remain far out of resonance, the in-
teraction between them will remain of the form Jσ̂Z

1 σ̂Z
2 .

Then spin 1 remains in state | ↑〉 throughout, effectively
producing a shift of +J to the Zeeman energy of spin
2. The same holds for spins 4 and 5, so we can describe
the non-trivial dynamics of the five spins via a three spin
Hamiltonian:

Ĥ = (A + J)(σ̂z
2 + σ̂z

4) + ǫ(t)σ̂3 + J(σ̂2.σ̂3 + σ̂3.σ̂4)

Suppose that at t = 0 we move abruptly from the passive
state ǫ = B to the perfectly resonant case ǫ = (A +
J). Then the two qubits X and Y will ‘spread’ over
all three cells. However at a time tr = h̄/(6J), spin 3

returns to its | ↓〉 state and an unitary transformation Ĝ
is achieved between X & Y . In their computational basis
{|00〉24, |01〉24, |10〉24, |11〉24} we find [12]

Ĝ =









1 0 0 0

0 W i
√

3W 0

0 i
√

3W W 0
0 0 0 1









where W = 1

2
eiπ/3.

This is an entangling gate and it is simple to use estab-
lished formalisms[13, 14] to generate a CNOT using 4

applications of Ĝ. Therefore tuning the Zeeman energy
of ‘barrier’ spins is adequate, in combination with single-
qubit gates, to efficiently implement quantum algorithms.
In a large array of spins, we can apply this process in-
dependently to barrier spins at various points - therefore
we have complete parallelism in this architecture. This is
a requirement for full quantum error correction [15]. In
this scheme and the following ones, barrier spin initial-
ization can be achieved by relaxing to the spin-polarised
ground state followed by selective spin rotations, either
via local gates or frequency selective global pulses.

(2) No single qubit ability. Suppose that we can-
not perform general rotations on individual spins (we can
only tune their Zeeman energies). Then we adopt the ar-
chitecture shown in Fig 2a. The passive state of the de-
vice now has a sequence of Zeeman energies ABCABC..
with C−B ≫ J and B−A ≫ J . (Other patterns such as
ABABAB.. may still suffice [16], but ABC is convenient
for the purpose of exposition.) Qubit representation is as
specified in Fig 2a, and the mechanism for single-qubit
gates is illustrated in Fig 2b. Fortuitously this encoding
constitutes a subspace that protects against long wave-
length phase noise. This is the prevalent noise in many
systems, as with low temperature phonons in the solid
state for example. The one- and two- qubit gates defined
in Fig. 2 respect the constraint that there is exactly one
| ↓〉 spin among the three associated with each qubit.
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FIG. 2: Strategies for implementing QC when no independent
mechanism for single qubit gates exists; these are now syn-
thesised via Zeeman tuning alone. This requires an encoding
(a) of two spins per qubit, with a third acting as a barrier.
All gates can be implemented purely by tuning the Zeeman
energy of the qubit that initially has energy ǫ = B. For single
qubit gates: If we abruptly tune this energy to ǫ = A, per-
fectly matching the energy of its neighbor, then the logical
qubit represented by this pair will experience [12] a continu-
ous rotation given by exp(iktσ̂x) as shown in (b)(i). Tuning
to an energy ǫ = A + δ will produce a rotation about an axis
in the z-x plane, the axis being determined by the ratio J to
δ, as depicted in (b)(ii). Such rotations can synthesize any
one-qubit gate. For a two-qubit gate we employ the process
shown in (c): we set the energy ǫ of our tunable spin to a
value near C. This effectively allows qubit X to ‘spread’ onto
the barrier spin, where it experiences a conditional phase gate
due to the proximity Y . Part (d) shows an architecture for the
case where Zeeman energies cannot be tuned independently
for nearby spins. QC can still be achieved, by collectively
tuning one of the two subsets with energies ǫeven and ǫodd.

To perform a two-qubit gate, we allow a qubit to ‘spread’
onto the ‘barrier’ spin as shown in Fig 2c. Our complete
process must of course return the ‘barrier’ back to the def-
inite state | ↑〉. By modelling a four-spin section AǫCA,
we find that this can be achieved by choosing ǫ = C + J :
a suitable ‘revival’ of the barrier spin then occurs at time
tr = (π/

√
5)(h̄/J). It is easy to show that the result-

ing unitary transformation K̂, along with two suitable
single-qubit gates [16], generates the transformation

M̂ =
(

Q̂1 ⊗ Q̂2
)

.K̂ =









1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e
−iπ
√

5









in the basis of qubits X and Y . We can then use estab-
lished formalisms[13] to generate a CNOT gate using two

applications of M̂ . We later note that this gate has some
advantages over the one employed in our 1st architecture.
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FIG. 3: Left: Cartoon emphasizing that, in our 3rd archi-
tecture, the entire computation on all qubits can be imple-
mented simply by switching between 6 settings. In practice
such switching would be of course be performed by a con-
ventional computer (not manually!), and moreover one would
require additional setting(s) for measurement. Right: in cer-
tain physical systems, the switch can be equivalent to adjust-
ing just a single global parameter.

(3) No ability for local gates. Until now we have
assumed that the experimentalist can tune the spins in-

dependently from one-another. Even this requirement can
be dispensed with, using a variant of the method defined
in Ref.[6] (a descendant of Lloyd’s global control scheme
[17]). Consider the architecture of the previous section
in which one in every three spins is ‘tunable’. Now no-
tionally divide those spins into two groups, the ‘odd’ and
‘even’ groups, in an alternating pattern (Fig 2d). Intro-
duce the dramatic simplification that all spins within the
odd group have the same energy ǫodd, and similarly for
the even group. Now suppose that we permit ourselves
to tune ǫeven, ǫodd through a sequence of values always

respecting the constraint |ǫodd − C| ≫ J . By the results
of the previous section, we know that this will allow us
to perform any single qubit gates on the corresponding
odd and even qubits, and to produce our phase gate M̂
between each even qubit and the odd qubit to its right.
This process, together with the complementary process
(under constraint |ǫeven −C| ≫ J), meets the fundamen-
tal conditions in Ref.[6]. In this way we can immedi-
ately translate the protocol defined there to the present
scheme. Universal QC (including error correction[15]) on
our entire multi-qubit device is thus governed via global

experimental parameters: ǫodd and ǫeven. Moreover these
parameters need only assume certain fixed values, given
that the duration is a continuous variable: for one-qubit
gates, A & A+J (say), and for a two-qubit gate, C+J . It
follows that only six specific pairs of values for ǫeven,ǫodd

suffice (Fig.3 left).

We have used the term ‘global’ even though the pro-
cess does require differentiation on the local scale between
the regular sets of ‘even’ and ‘odd’ spins (e.g. via a sin-
gle electrode running the length of the device, patterned
at the local scale [6]). But even this requirement can be
dispensed with in suitable systems, to yield pure global

control. The necessary physical property is illustrated on
the right side of Fig. 3: the Zeeman energies of certain
classes of spin must intersect as some external parame-
ter (typically a field strength) is swept. Since multiple
Zeeman energies then change simultaneously, unwanted
phase shifts would occur during two-qubit operations -
but these can be compensated for in subsequent steps. A
possible physical realization is noted below.

To meet the ultimate goal of full scale QC, one must
suppress all operational error rates sufficiently for them
to be handled by general error correction protocols[15].
We now review the potential error sources that are in-
trinsic to our schemes. Imperfectly localized tuning
of Zeeman energies: In reality nearby spins may be
effected to some degree. Fortunately all our schemes are
very robust against this effect. The two-qubit gates rely
on being able to bring two spins into resonance, which is
possible even if the second spin is experiencing a small
tuning effect. At worst one would simply generate an
easily-corrected phase shift. Imperfect gate opera-
tions: All QC proposals inevitably demand exquisite
control of their physical gate processes (to within error
correction thresholds). For our schemes this means pre-
cise timing of the spin resonance periods. An advantage
of our approach is that there is a simple tactic to make
this goal more achievable: we can ‘put to work’ our re-
dundant barrier spins via the Quantum Zeno Effect[18].
If we repeatedly collapse the state of the barrier spins
to their | ↑〉, | ↓〉 basis, on a time scale short compared
to the rate at which they would accumulate errors, then
we can actually suppress that accumulation. Note that
we use the term ‘collapse’ rather than ‘measurement’ to
emphasize that the phenomenon does not require one to
detect the outcome. For maximum efficiency the process
should be performed simultaneosuly for all barrier spins.
The process fails if a spin ever collapses to the ‘wrong’
state - but the total probability of such an event vanishes
with increasing frequency of collapse. Therefore the ideal
would be to collapse the barrier spin wavefunctions after
each gate operation (although never during an operation
of course). Later we outline some systems that could
support this idea. We emphasize that this exploitation
of the Zeno effect is not a requirement of our schemes -
we are merely observing that if the phenomenon is sup-
ported by a physical system then we can make good use
of it! In cases where it is not possible then it may be
desirable to opt for the type of two-qubit gate employed
in schemes 2 & 3: an imperfect operation there would
not generate three-qubit correlations. Irregularity in
physical separations, interaction strengths or sus-
ceptibility to Zeeman tuning: these could only be
tackled by ‘calibrating’ the system and tailoring the set
of Zeeman shifts to each spin uniquely. Again the form
of two-qubit gate in architecture 2 is robust, since this
does not rely on a symmetry of two interactions. How-
ever the non-local addressing in scheme 3 cannot accom-
modate inhomogeneities in this way, therefore it is only
suited to very regular structures (e.g. periodic molecu-
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lar systems, or atomically accurate quantum dot arrays).
Finite value of ∆: the importance of this energy ra-
tio is shown in Fig.1c. For large values of ∆ the gate is
near perfect, but the fidelity falls with ∆ and below 10
it rapidly becomes unusable, except perhaps for initial
‘proof in principle’ experiments. Therefore ideal physical
implementations will be those in which strong tuning of
the Zeeman energy is possible.

We will now highlight a few realizations. Our schemes
are relevant to all proposals for quantum computing that
involve a Heisenberg interaction and can support tuning
of transition energies. It is natural to first consider ‘true’
spin systems, e.g. single electron arrays. These are often
discussed as potential quantum computers; typical pro-
posals involve a mechanism for switching the interaction
and a second independent mechanism for performing sin-
gle qubit gates. Our schemes allow one to dispense with
the former and retain only the latter. To exploit the Zeno
effect, one could employ the Pauli blockade phenomenon:
a suitable optical pulse can conditionally create an exci-
ton (a bound electron-hole pair) in the region of a preex-
isting electron (the qubit) depending on its state. A pre-
vious QC proposal makes sophisticated use of this idea
[19] but here we exploit it very crudely: merely by allow-
ing the exciton to dissipatively decay (or to relax), one
would indirectly collapse the state of the electron spin.

Our schemes are also relevant to a different class of sys-
tem that operates (and decoheres) on a far more rapid
time scale: pure exciton computing. Exciton lifetimes
are very short, however the gates can be ultrafast (pi-
coseconds) so that a large number of operations could be
performed within that lifetime. In typical exciton QC
schemes the up/down pseudo-spin states are the pres-
ence/absence of an exciton on a quantum dot (QD), thus
our ‘Zeeman’ energy would correspond to the exciton cre-
ation energy. This could be tuned either by shifting the
exciton localization between regions of different band gap

(somewhat analogously to Ref.[3]) or via the quantum
confined Stark effect. The latter is expected[20] to be
very strong in double-dot structures: of order 100 meV
for achievable fields. The coupling strength J between
two separated pairs may be a fraction of 1 meV, leading
to a suitably large ratio ∆. Both the D.C. and A.C. Stark
effects are relevant - the latter could permit ‘all-optical’
control. Moreover the Stark effect is seen in many other
quantum systems (including molecular structures) and
could allow them to be similarly exploited. Furthermore,
since the creation energy is non-zero at zero field, the
Stark effect could in principle support the ‘pure’ global
switching illustrated in the right side of Fig. 3. Exciton
systems can also provide sufficiently rapid wavefunction
collapse for our Zeno exploitation, e.g. via a laser tuned
to generate an excited exciton state with rapid (picosec-
ond) intra-band relaxation. The required frequency may
be distinct for barrier spins versus qubit-bearing spins
(given that the barrier spins must have a distinct exci-
ton creation energy) - if so then one could simultaneously
collapse all barrier spin states with a global pulse.

Thus it appears that several of the phenomena asso-
ciated with excitonic systems may be well suited to our
purposes. Looking beyond such systems, we speculate
that the minimal demands of our 3rd architecture may
introduce the possibility of QC to new classes of sys-
tem. For example, in 1D Heisenberg magnets such as
KCuF3[21], the effect of coupling between two chains can
be replaced by an effective inhomogeneous magnetic field
on one of the chains [21]. Zeeman tuning might then be
accomplished by controlling the distance and alignment
of one 1D spin chain with respect to another.
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