5,433 research outputs found

    Full polar cap cascade scenario: Îł\gamma-ray and X-ray luminosities from spin-powered pulsars

    Full text link
    We modify polar cap cascade picture to include the ICS of the higher generation pairs. In such a ``full-cascade'' scenario, not only the perpendicular portion of the energy of the pairs goes to high energy radiation via SR, but the parallel portion of the energy of the pairs can also contribute to high energy emission via ICS with the soft thermal photons from either the full neutron star surface or the hot polar cap. An important output of such a scenario is that the soft tail of the ICS spectrum can naturally result in a non-thermal X-ray component which can contribute to the luminosities observed by ROSAT and ASCA. Here we present an analytic description of such a full polar cap cascade scenario within the framework of Harding & Muslimov acceleration model. We present the theoretical predictions of the Îł\gamma-ray luminosities, the thermal and non-thermal X-ray luminosities for the known spin-powered X-ray pulsars. Our results show that the observed different dependences of the high energy luminosities on the pulsar spin-down luminosities, i.e., Lγ∝(Lsd)1/2L_\gamma \propto (L_{\rm sd})^{1/2} and Lx∌10−3LsdL_x \sim 10^{-3} L_{\rm sd}, are well reproduced. Our model predicts that the {\em pulsed} soft X-rays in the ROSAT band from most of the millisecond pulsars might be of thermal origin if there is no strong multipole field components near the surfaces of these pulsars.Comment: 23 pages, emulateapj style, final version to appear in the Astrophysical Journa

    Seismic structure of the southern Gulf of California from Los Cabos block to the East Pacific Rise

    Get PDF
    Multichannel reflection and coincident wide-angle seismic data collected during the 2002 Premier Experiment, Sea of Cortez, Addressing the Development of Oblique Rifting (PESCADOR) experiment provide the most detailed seismic structure to date of the southern Gulf of California. Multichannel seismic (MCS) data were recorded with a 6-km-long streamer, 480-channel, aboard the R/V Maurice Ewing, and wide-angle data was recorded by 19 instruments spaced every similar to 12 km along the transect. The MCS and wide-angle data reveal the seismic structure across the continent-ocean transition of the rifted margin. Typical continental and oceanic crust are separated by a similar to 75-km-wide zone of extended continental crust dominated by block-faulted basement. Little lateral variation in crustal thicknesses and seismic velocities is observed in the oceanic crust, suggesting a constant rate of magmatic productivity since seafloor spreading began. Oceanic crustal thickness and mean crustal velocities suggest normal mantle temperature (1300 degrees C) and passive mantle upwelling at the early stages of seafloor spreading. The crustal thickness, width of extended continental crust, and predicted temperature conditions all indicate a narrow rift mode of extension. On the basis of upper and lower crust stretching factors, an excess of lower crust was found in the extended continental crust. Total extension along transect 5W is estimated to be similar to 35 km. Following crustal extension, new oceanic crust similar to 6.4-km-thick was formed at a rate of similar to 48 mm a(-1) to accommodate plate separation

    Pair Production Absorption Troughs in Gamma-Ray Burst Spectra: A Potential Distance Discriminator

    Get PDF
    Relativistic bulk motion with large Lorentz factors has recently been inferred for gamma-ray bursts regardless of whether they are of galactic or cosmological origin. This conclusion results from calculations of internal pair production transparency in bursts that usually assume an infinite power-law source spectrum for simplicity, an approximation that is quite adequate for some bursts detected by EGRET. However, for a given bulk Lorentz factor \teq{\Gamma}, photons above the EGRET range can potentially interact with sub-MeV photons in such calculations. Hence it is essential to accurately address the spectral curvature in bursts seen by BATSE. In this paper we present the major properties induced in photon-photon opacity considerations by such spectral curvature. The observed spectral breaks around 1 MeV turn out to be irrelevant to opacity in cosmological bursts, but are crucial to estimates of source transparency in the 1 GeV -- 1 TeV range for sources located in the galactic halo. We find that broad absorption troughs can arise at these energies for suitable bulk motion parameters \teq{\Gamma}. Such troughs are probably an unambiguous signature of a galactic halo population, and if observed by experiments such as Whipple, MILAGRO and GLAST, would provide powerful evidence that such bursts are not at cosmological distances.Comment: 10 pages, AASTeX format, including 2 eps figures, ApJLett in pres

    On the Origin of X-ray Emission From Millisecond Pulsars in 47 Tuc

    Get PDF
    The observed spectra and X-ray luminosities of millisecond pulsars in 47 Tuc can be interpreted in the context of theoretical models based on strong, small scale multipole fields on the neutron star surface. For multipole fields that are relatively strong as compared to the large scale dipole field, the emitted X-rays are thermal and likely result from polar cap heating associated with the return current from the polar gap. On the other hand, for weak multipole fields, the emission is nonthermal and results from synchrotron radiation of e±e^{\pm} pairs created by curvature radiation. The X-ray luminosity, LxL_x, is related to the spin down power, LsdL_{sd}, expressed in the form Lx∝LsdÎČL_x \propto L^{\beta}_{sd} with ÎČ∌0.5\beta \sim 0.5 and ∌1\sim 1 for strong and weak multipole fields respectively. If the polar cap size is of the order of the length scale of the multipole field, ss and ÎČ∌0.5\beta \sim 0.5, the polar cap temperature is ∌3×106K(Lsd1034ergs−1)1/8(s3×104cm)−1/2\sim 3 \times 10^6 K (\frac{L_{sd}}{10^{34}erg s^{-1}})^{1/8} (\frac{s}{3\times 10^4 cm})^{-1/2}. A comparison of the X-ray properties of millisecond pulsars in globular clusters and in the Galactic field suggests that the emergence of relatively strong small scale multipole fields from the neutron star interior may be correlated with the age and evolutionary history of the underlying neutron star.Comment: 25 pages, 2 figures, accepted for publication in Ap

    Unstable states in QED of strong magnetic fields

    Get PDF
    We question the use of stable asymptotic scattering states in QED of strong magnetic fields. To correctly describe excited Landau states and photons above the pair creation threshold the asymptotic fields are chosen as generalized Licht fields. In this way the off-shell behavior of unstable particles is automatically taken into account, and the resonant divergences that occur in scattering cross sections in the presence of a strong external magnetic field are avoided. While in a limiting case the conventional electron propagator with Breit-Wigner form is obtained, in this formalism it is also possible to calculate SS-matrix elements with external unstable particles.Comment: Revtex, 7 pages. To appear in Phys. Rev. D53(2

    The Wicked Machinery of Government: Malta and the Problems of Continuity under the New Model Administration

    Get PDF
    This is a study focused on the early years of British rule in Malta (1800-1813). It explores the application to the island of the “new model” of colonial government, one based on direct rule from London mediated by the continuation of existing laws and institutions. Systemic deficiencies are identified. These tended to undermine the effectiveness of direct British rule. This study also reveals, in the context of legal and constitutional continuity, unresolved tensions between modernity and tradition. The political stability of the island was damaged and the possibility of continued British possession was threatened

    Three Millisecond Pulsars in FERMI LAT Unassociated Bright Sources

    Full text link
    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsars (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<=2 kpc) millisecond pulsars. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power-law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of ~10^{30-31} erg/s are typical of the rare radio MSPs seen in X-rays.Comment: Accepted for publication in ApJ Letter

    Spin and magnetization effects in plasmas

    Full text link
    We give a short review of a number of different models for treating magnetization effects in plasmas. In particular, the transition between kinetic models and fluid models is discussed. We also give examples of applications of such theories. Some future aspects are discussed.Comment: 18 pages, 1 figure. To appear in Plasma Physics and Controlled Fusion, Special Issue for the 37th ICPP, Santiago, Chil

    Particle Acceleration Zones Above Pulsar Polar Caps: Electron and Positron Pair Formation Fronts

    Get PDF
    We investigate self-consistent particle acceleration near a pulsar polar cap (PC) by the electrostatic field due to the effect of inertial frame dragging. Test particles gain energy from the electric field parallel to the open magnetic field lines and lose energy by both curvature radiation (CR) and resonant and non-resonant inverse Compton scattering (ICS) with soft thermal X-rays from the neutron star (NS) surface. Gamma-rays radiated by electrons accelerated from the stellar surface produce pairs in the strong magnetic field, which screen the electric field beyond a pair formation front (PFF). Some of the created positrons can be accelerated back toward the surface and produce gamma-rays and pairs that create another PFF above the surface. We find that ICS photons control PFF formation near the surface, but due to the different angles at which the electron and positron scatter the soft photons, positron initiated cascades develop above the surface and screen the accelerating electric field. Stable acceleration from the NS surface is therefore not possible in the presence of dominant ICS energy losses. However, we find that stable acceleration zones may occur at some distance above the surface, where CR dominates the electron and positron energy losses, and there is up-down symmetry between the electron and positron PFFs. We examine the dependence of CR-controlled acceleration zone voltage, width and height above the surface on parameters of the pulsar and its soft X-ray emission. For most pulsars, we find that acceleration will start at a height of 0.5 - 1 stellar radii above the NS surface.Comment: 46 pages, 12 embedded figures, accepted for publication in Ap
    • 

    corecore