783 research outputs found

    Atomistic-to-continuum coupling

    Get PDF
    Atomistic-to-continuum (a/c) coupling methods are a class of computational multiscale schemes that combine the accuracy of atomistic models with the efficiency of continuum elasticity. They are increasingly being utilized in materials science to study the fundamental mechanisms of material failure such as crack propagation and plasticity, which are governed by the interaction between crystal defects and long-range elastic fields. In the construction of a/c coupling methods, various approximation errors are committed. A rigorous numerical analysis approach that classifies and quantifies these errors can give confidence in the simulation results, as well as enable optimization of the numerical methods for accuracy and computational cost. In this article, we present such a numerical analysis framework, which is inspired by recent research activity

    The Nonlinear Debye-Onsager Relaxation Effect in Weakly Ionized Plasmas

    Full text link
    A weakly ionized plasma under the influence of a strong electric field is considered. Supposing a local Maxwellian distribution for the electron momenta the plasma is described by hydrodynamic equations for the pair distribution functions. These equations are solved and the relaxation field is calculated for an arbitrary field strength. It is found that the relaxation effect becomes lower with increasing strength of the electrical field.Comment: 4 pages, 1 figur

    Non-linear exciton spin-splitting in single InAs/GaAs self-assembled quantum structures in ultrahigh magnetic fields

    Full text link
    We report on the magnetic field dispersion of the exciton spin-splitting and diamagnetic shift in single InAs/GaAs quantum dots (QDs) and dot molecules (QDMs) up to BB = 28 T. Only for systems with strong geometric confinement, the dispersions can be well described by simple field dependencies, while for dots with weaker confinement considerable deviations are observed: most importantly, in the high field limit the spin-splitting shows a non-linear dependence on BB, clearly indicating light hole admixtures to the valence band ground state

    Evolution of induced axial magnetization in a two-component magnetized plasma

    Full text link
    In this paper, the evolution of the induced axial magnetization due to the propagation of an electromagnetic (em) wave along the static background magnetic field in a two-component plasma has been investigated using the Block equation. The evolution process induces a strong magnetic anisotropy in the plasma medium, depending nonlinearly on the incident wave amplitude. This induced magnetic anisotropy can modify the dispersion relation of the incident em wave, which has been obtained in this paper. In the low frequency Alfven wave limit, this dispersion relation shows that the resulting phase velocity of the incident wave depends on the square of the incident wave amplitude and on the static background magnetic field of plasma. The analytical results are in well agreement with the numerically estimated values in solar corona and sunspots.Comment: 7 pages, 1 figur

    Quasi-classical Molecular Dynamics Simulations of the Electron Gas: Dynamic properties

    Get PDF
    Results of quasi-classical molecular dynamics simulations of the quantum electron gas are reported. Quantum effects corresponding to the Pauli and the Heisenberg principle are modeled by an effective momentum-dependent Hamiltonian. The velocity autocorrelation functions and the dynamic structure factors have been computed. A comparison with theoretical predictions was performed.Comment: 8 figure

    Correlation energy of an electron gas in strong magnetic fields at high densities

    Full text link
    The high-density electron gas in a strong magnetic field B and at zero temperature is investigated. The quantum strong-field limit is considered in which only the lowest Landau level is occupied. It is shown that the perturbation series of the ground-state energy can be represented in analogy to the Gell-Mann Brueckner expression of the ground-state energy of the field-free electron gas. The role of the expansion parameter is taken by r_B= (2/3 \pi^2) (B/m^2) (\hbar r_s /e)^3 instead of the field-free Gell-Mann Brueckner parameter r_s. The perturbation series is given exactly up to o(r_B) for the case of a small filling factor for the lowest Landau level.Comment: 10 pages, Accepted for publication in Phys.Rev.
    corecore