2,803 research outputs found

    Ultra-high-sensitivity two-dimensional bend sensor

    Get PDF
    A multicore fibre Fabry-Perot-based strain sensor interrogated with tandem interferometry for bend measurement is described. Curvature in two dimensions is obtained by measuring the difference in strain between three co-located low finesse Fabry-Perot interferometers formed in each core of the fibre by pairs of Bragg gratings. This sensor provides a responsivity enhancement of up to 30 times that of a previously reported fibre Bragg grating based sensor. Strain resolutions of 0.6 n epsilon/Hz(1/2) above 1 Hz are demonstrated, which corresponds to a curvature resolution of similar to 0.012 km(-1)/Hz(1/2)

    An optical fibre dynamic instrumented palpation sensor for the characterisation of biological tissue

    Get PDF
    AbstractThe diagnosis of prostate cancer using invasive techniques (such as biopsy and blood tests for prostate-specific antigen) and non-invasive techniques (such as digital rectal examination and trans-rectal ultrasonography) may be enhanced by using an additional dynamic instrumented palpation approach to prostate tissue classification. A dynamically actuated membrane sensor/actuator has been developed that incorporates an optical fibre Fabry–Pérot interferometer to record the displacement of the membrane when it is pressed on to different tissue samples. The membrane sensor was tested on a silicon elastomer prostate model with enlarged and stiffer material on one side to simulate early stage prostate cancer. The interferometer measurement was found to have high dynamic range and accuracy, with a minimum displacement resolution of ±0.4μm over a 721μm measurement range. The dynamic response of the membrane sensor when applied to different tissue types changed depending on the stiffness of the tissue being measured. This demonstrates the feasibility of an optically tracked dynamic palpation technique for classifying tissue type based on the dynamic response of the sensor/actuator

    Two-axis bend measurement with Bragg gratings in multicore optical fiber

    Get PDF
    We describe what is to our knowledge the first use of fiber Bragg gratings written into three separate cores of a multicore fiber for two-axis curvature measurement. The gratings act as independent, but isothermal, fiber strain gauges for which local curvature determines the difference in strain between cores, permitting temperature-independent bend measurement. (C) 2003 Optical Society of America

    Predictors and Moderators in the Randomized Trial of Multi-Family Psychoeducational Psychotherapy for Childhood Mood Disorders

    Get PDF
    OBJECTIVE: This study investigated predictors and moderators of mood symptoms in the randomized controlled trial (RCT) of Multi-Family Psychoeducational Psychotherapy (MF-PEP) for childhood mood disorders. METHOD: Based on predictors and moderators in RCTs of psychosocial interventions for adolescent mood disorders, we hypothesized that children’s greater functional impairment would predict worse outcome, while children’s stress/trauma history and parental expressed emotion and psychopathology would moderate outcome. Exploratory analyses examined other demographic, functioning, and diagnostic variables. Logistic regression and linear mixed effects modeling were used in this secondary analysis of the MF-PEP RCT of 165 children, ages 8–12, with mood disorders, a majority of whom were male (73%) and White, non-Hispanic (90%). RESULTS: Treatment nonresponse was significantly associated with higher baseline levels of global functioning (i.e., less impairment; Cohen’s d = 0.51) and lower levels of stress/trauma history (d = 0.56) in children and Cluster B personality disorder symptoms in parents (d = 0.49). Regarding moderators, children with moderately impaired functioning who received MF-PEP had significantly decreased mood symptoms (t = 2.10, d = 0.33) compared with waitlist control. MF-PEP had the strongest effect on severely impaired children (t = 3.03, d = 0.47). CONCLUSIONS: Comprehensive assessment of demographic, youth, parent, and familial variables should precede intervention. Treatment of mood disorders in high functioning youth without stress/trauma histories and with parents with elevated Cluster B symptoms may require extra therapeutic effort, while severely impaired children may benefit most from MF-PEP

    Investigation of shock waves in explosive blasts using fibre optic pressure sensors

    Get PDF
    The published version of this article may be accessed at the link below. Copyright @ IOP Publishing, 2006.We describe miniature all-optical pressure sensors, fabricated by wafer etching techniques, less than 1 mm(2) in overall cross-section with rise times in the mu s regime and pressure ranges typically 900 kPa (9 bar). Their performance is suitable for experimental studies of the pressure-time history for test models exposed to shocks initiated by an explosive charge. The small size and fast response of the sensors promises higher quality data than has been previously available from conventional electrical sensors, with potential improvements to numerical models of blast effects. Results from blast tests are presented in which up to six sensors were multiplexed, embedded within test models in a range of orientations relative to the shock front.Support from the UK Engineering&Physical Sciences Research Council and Dstl Fort Halstead through the MoD Joint Grants Scheme are acknowledged. WN MacPherson is supported by an EPSRC Advanced Research Fellowship

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites

    Fifteen-year prospective longitudinal cohort study of outcomes following single radius total knee arthroplasty

    Get PDF
    Aims This prospective study reports longitudinal, within-patient, patient-reported outcome measures (PROMs) over a 15-year period following cemented single radius total knee arthroplasty (TKA). Secondary aims included reporting PROMs trajectory, 15-year implant survival, and patient attrition from follow-up. Methods From 2006 to 2007, 462 consecutive cemented cruciate-retaining Triathlon TKAs were implanted in 426 patients (mean age 69 years (21 to 89); 290 (62.7%) female). PROMs (12-item Short Form Survey (SF-12), Oxford Knee Score (OKS), and satisfaction) were assessed preoperatively and at one, five, ten, and 15 years. Kaplan-Meier survival and univariate analysis were performed. Results At 15 years, 28 patients were lost to follow-up (6.1%) and 221 patients (51.9%) had died, with the mean age of the remaining cohort reducing by four years. PROMs response rates among surviving patients were: one-year 63%; five-year 72%; ten-year 94%; and 15-year 59%. OKS and SF-12 scores changed significantly over 15 years (p &lt; 0.001). The mean improvement in OKS was 18.8 (95% confidence (CI) 16.7 to 19.0) at one year. OKS peaked at five years (median 43 years) declining thereafter (p &lt; 0.001), though at 15 years it remained 17.5 better than preoperatively. Age and sex did not alter this trajectory. A quarter of patients experienced a clinically significant decline (≥ 7) in OKS from five to ten years and from ten to 15 years. The SF-12 physical component score displayed a similar trajectory, peaking at one year (p &lt; 0.001). Patient satisfaction was 88% at one, five, and ten years, and 94% at 15 years. In all, 15-year Kaplan-Meier survival was 97.6% (95% CI 96.0% to 99.2%) for any revision, and 98.9% (95% CI 97.9% to 99.9%) for aseptic revision. Conclusion Improvements in PROMs were significant and maintained following single radius TKA, with OKS peaking at five years, and generic physical health peaking at one year. Patient satisfaction remained high at 15 years, at which point 2.4% had been revised.</p

    Tunnel monitoring using multicore fibre displacement sensor

    Get PDF
    We describe the first application of multiplexed fibre Bragg grating strain sensors in a multicore fibre. Sets of gratings, acting as strain gauges, are co-located in the multicore fibre such that they enable the curvature to be measured. Multiple sets of these gratings allow the curvature to be measured at several points along the fibre. This sensor is configured to monitor displacement of concrete tunnel sections, and was demonstrated capable of displacement measurement with a resolution of ±0.1 mm over a range of several millimeters
    corecore