271 research outputs found

    Bacterial flagellar motors and osmoelectric molecular rotation by an axially transmembrane well and turnstile mechanism

    Get PDF
    AbstractBacterial ion-driven flagellar motors are the smallest known rotatory mechanical devices, natural or artificial, their overall diameter being only about 25 nm or one millionth of an inch. They are unique in the fields of biology and engineering. This paper develops a possible osmoelectric or local electrokinetic mechanism of molecular rotatory motion in bilayer membranes, which may help to explain how bacterial flagellar motors work, and may incidentally encourage new developments in the bioenergetics and biomechanics of enzyme, osmoenzyme and porter action

    Is There Such a Thing as Psychological Pain? and Why It Matters

    Get PDF
    Medicine regards pain as a signal of physical injury to the body despite evidence contradicting the linkage and despite the exclusion of vast numbers of sufferers who experience psychological pain. By broadening our concept of pain and making it more inclusive, we would not only better accommodate the basic science of pain but also would recognize what is already appreciated by the layperson—that pain from diverse sources, physical and psychological, share an underlying felt structure

    Tissue specific characteristics of cells isolated from human and rat tendons and ligaments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tendon and ligament injuries are common and costly in terms of surgery and rehabilitation. This might be improved by using tissue engineered constructs to accelerate the repair process; a method used successfully for skin wound healing and cartilage repair. Progress in this field has however been limited; possibly due to an over-simplistic choice of donor cell. For tissue engineering purposes it is often assumed that all tendon and ligament cells are similar despite their differing roles and biomechanics. To clarify this, we have characterised cells from various tendons and ligaments of human and rat origin in terms of proliferation, response to dexamethasone and cell surface marker expression.</p> <p>Methods</p> <p>Cells isolated from tendons by collagenase digestion were plated out in DMEM containing 10% fetal calf serum, penicillin/streptomycin and ultraglutamine. Cell number and collagen accumulation were by determined methylene blue and Sirius red staining respectively. Expression of cell surface markers was established by flow cytometry.</p> <p>Results</p> <p>In the CFU-f assay, human PT-derived cells produced more and bigger colonies suggesting the presence of more progenitor cells with a higher proliferative capacity. Dexamethasone had no effect on colony number in ACL or PT cells but 10 nM dexamethasone increased colony size in ACL cultures whereas higher concentrations decreased colony size in both ACL and PT cultures. In secondary subcultures, dexamethasone had no significant effect on PT cultures whereas a stimulation was seen at low concentrations in the ACL cultures and an inhibition at higher concentrations. Collagen accumulation was inhibited with increasing doses in both ACL and PT cultures. This differential response was also seen in rat-derived cells with similar differences being seen between Achilles, Patellar and tail tendon cells. Cell surface marker expression was also source dependent; CD90 was expressed at higher levels by PT cells and in both humans and rats whereas D7fib was expressed at lower levels by PT cells in humans.</p> <p>Conclusion</p> <p>These data show that tendon & ligament cells from different sources possess intrinsic differences in terms of their growth, dexamethasone responsiveness and cell surface marker expression. This suggests that for tissue engineering purposes the cell source must be carefully considered to maximise their efficacy.</p

    Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study

    Get PDF
    BACKGROUND: Tendinosis lesions show an increase of glycosaminoglycan amount, calcifications, and lipid accumulation. Therefore, altered cellular differentiation might play a role in the etiology of tendinosis. This study investigates whether adolescent human tendon tissue contains a population of cells with intrinsic differentiation potential. METHODS: Cells derived from adolescent non-degenerative hamstring tendons were characterized by immunohistochemistry and FACS-analysis. Cells were cultured for 21 days in osteogenic, adipogenic, and chondrogenic medium and phenotypical evaluation was carried out by immunohistochemical and qPCR analysis. The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs). RESULTS: Tendon-derived cells stained D7-FIB (fibroblast-marker) positive, but α-SMA (marker for smooth muscle cells and pericytes) negative. Tendon-derived cells were 99% negative for CD34 (endothelial cell marker), and 73% positive for CD105 (mesenchymal progenitor-cell marker). In adipogenic medium, intracellular lipid vacuoles were visible and tendon-derived fibroblasts showed upregulation of adipogenic markers FABP4 (fatty-acid binding protein 4) and PPARG (peroxisome proliferative activated receptor γ). In chondrogenic medium, some cells stained positive for collagen 2 and tendon-derived fibroblasts showed upregulation of collagen 2 and collagen 10. In osteogenic medium Von Kossa staining showed calcium deposition although osteogenic markers remained unaltered. Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations. CONCLUSION: This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential. These results support the hypothesis that there might be a role for altered tendon-cell differentiation in the pathophysiology of tendinosis

    Increased endothelin-1 and diminished nitric oxide levels in blister fluids of patients with intermediate cold type complex regional pain syndrome type 1

    Get PDF
    BACKGROUND: In complex regional pain syndrome type 1 (CRPS1) pro-inflammatory mediators and vascular changes play an important role in the sustained development and outcome of the disease. The aim of this study was to determine the involvement of vasoactive substances endothelin-1 (ET-1) and nitric oxide (NO) during early chronic CRPS1. METHODS: Included were 29 patients with CRPS 1 who were diagnosed during the acute stage of their disease and observed during follow-up visits. Disease activity and impairment were determined and artificial suction blisters were made on the CRPS1 and the contralateral extremities for measurements of IL-6, TNF-α, ET-1 and nitrate/nitrite (NOx). RESULTS: The levels of IL-6, TNF-α and ET-1 in blister fluid in the CRPS1 extremity versus the contralateral extremity were significantly increased and correlated with each other, whereas NOx levels were decreased. CONCLUSION: The NOx/ET-1 ratio appears to be disturbed in the intermediate stage of CRPS, resulting in vasoconstriction and consequently in a diminished tissue blood distribution

    Biomethanation potential of biological and other wastes

    Get PDF
    Anaerobic technology has been traditionally applied for the treatment of carbon rich wastewater and organic residues. Anaerobic processes can be fully integrated in the biobased economy concept for resource recovery. After a brief introduction about applications of anaerobic processes to industrial wastewater treatment, agriculture feedstock and organic fraction of municipal solid waste, the position of anaerobic processes in biorefinery concepts is presented. Integration of anaerobic digestion with these processes can help in the maximisation of the economic value of the biomass used, while reducing the waste streams produced and mitigating greenhouse gases emissions. Besides the integration of biogas in the existing full-scale bioethanol and biodiesel production processes, the potential applications of biogas in the second generation lignocellulosic, algae and syngas-based biorefinery platforms are discussed.(undefined

    Metalloproteinases and their inhibitors—diagnostic and therapeutic opportunities in orthopedics

    Get PDF
    Matrix metalloproteinases (MMPs) and related enzymes (ADAMs, ADAMTS) and their inhibitors control matrix turnover and function. Recent advances in our understanding of musculoskeletal conditions such as tendinopathy, arthritis, Dupuytren's disease, degenerative disc disease, and bone and soft tissue healing suggest that MMPs have prominant roles. Importantly, MMPs are amenable to inhibition by cheap, safe, and widely available drugs such as the tetracycline antibiotics and the bisphosphonates. This indicates that these MMP inhibitors, if proven effective for any novel indication, may be quickly brought into clinical practice

    Mapping and Imaging the Aggressive Brain in Animals and Humans

    Get PDF

    Regulation of peripheral blood flow in Complex Regional Pain Syndrome: clinical implication for symptomatic relief and pain management

    Get PDF
    Background. During the chronic stage of Complex Regional Pain Syndrome (CRPS), impaired microcirculation is related to increased vasoconstriction, tissue hypoxia, and metabolic tissue acidosis in the affected limb. Several mechanisms may be responsible for the ischemia and pain in chronic cold CPRS. Discussion. The diminished blood flow may be caused by either sympathetic dysfunction, hypersensitivity to circulating catecholamines, or endothelial dysfunction. The pain may be of neuropathic, inflammatory, nociceptive, or functional nature, or of mixed origin. Summary. The origin of the pain should be the basis of the symptomatic therapy. Since the difference in temperature between both hands fluctuates over time in cold CRPS, when in doubt, the clinician should prioritize the patient's report of a persistent cold extremity over clinical tests that show no difference. Future research should focus on developing easily applied methods for clinical use to differentiate between central and peripheral blood flow regulation disorders in individual patients
    corecore