3,432 research outputs found

    Probing the equation of state of neutron-rich matter with intermediate energy heavy-ion collisions

    Full text link
    Nuclear reactions induced by stable and/or radioactive neutron-rich nuclei provide the opportunity to pin down the equation of state of neutron-rich matter, especially the density (ρ\rho) dependence of its isospin-dependent part, i.e., the nuclear symmetry energy EsymE_{\rm sym}. A conservative constraint, 32(ρ/ρ0)0.7<Esym(ρ)<32(ρ/ρ0)1.132(\rho /\rho_{0})^{0.7} < E_{\rm sym}(\rho ) < 32(\rho /\rho _{0})^{1.1}, around the nuclear matter saturation density ρ0\rho_0 has recently been obtained from the isospin diffusion data in intermediate energy heavy-ion collisions. We review this exciting result and discuss its consequences and implications on nuclear effective interactions, radii and cooling mechanisms of neutron stars.Comment: 10 pages. Invited talks at (1) International Workshop on Nuclear Multifragmentation, Nov. 28-Dec. 1, 2005, Catania, Italy and (2) XXIX Symposium on Nuclear Physics, Jan. 3-6, 2006, Cocoyoc, Morelos, Mexic

    Nuclear matter symmetry energy and the neutron skin thickness of heavy nuclei

    Full text link
    Correlations between the thickness of the neutron skin in finite nuclei and the nuclear matter symmetry energy are studied in the Skyrme Hartree-Fock model. From the most recent analysis of the isospin diffusion data in heavy-ion collisions based on an isospin- and momentum-dependent transport model with in-medium nucleon-nucleon cross sections, a value of L=88±25L=88\pm 25 MeV for the slope of the nuclear symmetry energy at saturation density is extracted, and this imposes stringent constraints on both the parameters in the Skyrme effective interactions and the neutron skin thickness of heavy nuclei. Predicted thickness of the neutron skin is 0.22±0.040.22\pm 0.04 fm for % ^{208}Pb, 0.29±0.040.29\pm 0.04 fm for 132^{132}Sn, and 0.22±0.040.22\pm 0.04 fm for % ^{124}Sn.Comment: 6 pages, 4 figures, 1 table, revised version, to appear in PR

    Constraining the Skyrme effective interactions and the neutron skin thickness of nuclei using isospin diffusion data from heavy ion collisions

    Get PDF
    Recent analysis of the isospin diffusion data from heavy-ion collisions based on an isospin- and momentum-dependent transport model with in-medium nucleon-nucleon cross sections has led to the extraction of a value of L=88±25L=88\pm 25 MeV for the slope of the nuclear symmetry energy at saturation density. This imposes stringent constraints on both the parameters in the Skyrme effective interactions and the neutron skin thickness of heavy nuclei. Among the 21 sets of Skyrme interactions commonly used in nuclear structure studies, the 4 sets SIV, SV, Gσ_\sigma, and Rσ_\sigma are found to give LL values that are consistent with the extracted one. Further study on the correlations between the thickness of the neutron skin in finite nuclei and the nuclear matter symmetry energy in the Skyrme Hartree-Fock approach leads to predicted thickness of the neutron skin of 0.22±0.040.22\pm 0.04 fm for 208^{208}Pb, 0.29±0.040.29\pm 0.04 fm for 132^{132}Sn, and 0.22±0.040.22\pm 0.04 fm for 124^{124}Sn.Comment: 10 pages, 4 figures, 1 Table, Talk given at 1) International Conference on Nuclear Structure Physics, Shanghai, 12-17 June, 2006; 2) 11th China National Nuclear Structure Physics Conference, Changchun, Jilin, 13-18 July, 200

    Determination of the stiffness of the nuclear symmetry energy from isospin diffusion

    Get PDF
    With an isospin- and momentum-dependent transport model, we find that the degree of isospin diffusion in heavy ion collisions at intermediate energies is affected by both the stiffness of the nuclear symmetry energy and the momentum dependence of the nucleon potential. Using a momentum dependence derived from the Gogny effective interaction, recent experimental data from NSCL/MSU on isospin diffusion are shown to be consistent with a nuclear symmetry energy given by Esym(ρ)31.6(ρ/ρ0)1.05E_{\text{sym}}(\rho)\approx 31.6(\rho /\rho_{0})^{1.05} at subnormal densities. This leads to a significantly constrained value of about -550 MeV for the isospin-dependent part of the isobaric incompressibility of isospin asymmetric nuclear matter.Comment: 4 pages, 4 figures, 1 table, revised version, to appear in PR

    Equation of state of the hot dense matter in a multi-phase transport model

    Full text link
    Within the framework of a multi-phase transport model, we study the equation of state and pressure anisotropy of the hot dense matter produced in central relativistic heavy ion collisions. Both are found to depend on the hadronization scheme and scattering cross sections used in the model. Furthermore, only partial thermalization is achieved in the produced matter as a result of its fast expansion

    Effect of symmetry energy on two-nucleon correlation functions in heavy-ion collisions induced by neutron-rich nuclei

    Get PDF
    Using an isospin-dependent transport model, we study the effects of nuclear symmetry energy on two-nucleon correlation functions in heavy ion collisions induced by neutron-rich nuclei. We find that the density dependence of the nuclear symmetry energy affects significantly the nucleon emission times in these collisions, leading to larger values of two-nucleon correlation functions for a symmetry energy that has a stronger density dependence. Two-nucleon correlation functions are thus useful tools for extracting information about the nuclear symmetry energy from heavy ion collisions.Comment: Revised version, to appear in Phys. Rev. Let

    Circumstantial evidence for a soft nuclear symmetry energy at supra-saturation densities

    Full text link
    Within an isospin- and momentum-dependent hadronic transport model it is shown that the recent FOPI data on the π/π+\pi^-/\pi^+ ratio in central heavy-ion collisions at SIS/GSI energies (Willy Reisdorf {\it et al.}, NPA {\bf 781}, 459 (2007)) provide circumstantial evidence suggesting a rather soft nuclear symmetry energy \esym at ρ2ρ0\rho\geq 2\rho_0 compared to the Akmal-Pandharipande-Ravenhall prediction. Some astrophysical implications and the need for further experimental confirmations are discussed.Comment: Version to appear in Phys. Rev. Let

    WH/ZHW_H/Z_H production associated with a T-odd (anti)quark at the LHC in NLO QCD

    Full text link
    In the framework of the littlest Higgs model with T parity, we study the WH/ZHW_H/Z_H production in association with a T-odd (anti)quark of the first two generations at the CERN Large Hadron Collider up to the QCD next-to-leading order. The kinematic distributions of final decay products and the theoretical dependence of the cross section on the factorization/renormalization scale are discussed. We apply three schemes in considering the QCD NLO contributions and find that the QCD NLO corrections by adopting the (II) and (III) subtraction schemes can keep the convergence of the perturbative QCD description and reduce the scale uncertainty of the leading order cross section. By using these two subtraction schemes, the QCD NLO corrections to the WH(ZH)qW_H(Z_H) q_- production process enhance the leading order cross section with a K-factor in the range of 1.001.431.00 \sim 1.43.Comment: 31 pages, 12 figures, accepted by Phys. Rev.

    Transition Density and Pressure at the Inner Edge of Neutron Star Crusts

    Full text link
    Using the nuclear symmetry energy that has been recently constrained by the isospin diffusion data in intermediate-energy heavy ion collisions, we have studied the transition density and pressure at the inner edge of neutron star crusts, and they are found to be 0.040 fm3^{-3} ρt0.065\leq \rho_{t}\leq 0.065 fm3^{-3} and 0.01 MeV/fm3^{3} Pt0.26\leq P_{t}\leq 0.26 MeV/fm3^{3}, respectively, in both the dynamical and thermodynamical approaches. We have also found that the widely used parabolic approximation to the equation of state of asymmetric nuclear matter gives significantly higher values of core-crust transition density and pressure, especially for stiff symmetry energies. With these newly determined transition density and pressure, we have obtained an improved relation between the mass and radius of neutron stars.Comment: 7 pages, 3 figures, proceeding of "The International Workshop on Nuclear Dynamics in Heavy-Ion Reactions and the Symmetry Energy (IWND2009)

    Furanodiene alters mitochondrial function in doxorubicin-resistant MCF-7 human breast cancer cells in an AMPK-dependent manner

    Get PDF
    Furanodiene is a bioactive sesquiterpene isolated from the spice-producing Curcuma wenyujin plant (Y. H. Chen and C. Ling) (C. wenyujin), which is a commonly prescribed herb used in clinical cancer therapy by modern practitioners of traditional Chinese medicine. Previously, we have shown that furanodiene inhibits breast cancer cell growth both in vitro and in vivo, however, the mechanism for this effect is not yet known. In this study, therefore, we asked (1) whether cultured breast cancer cells made resistant to the chemotherapeutic agent doxorubicin (DOX) via serial selection protocols are susceptible to furanodiene\u27s anticancer effect, and (2) whether AMP-activated protein kinase (AMPK), which is a regulator of cellular energy homeostasis in eukaryotic cells, participates in this effect. We show here (1) that doxorubicin-resistant MCF-7 (MCF-7/DOXR) cells treated with furanodiene exhibit altered mitochondrial function and reduced levels of ATP, resulting in apoptotic cell death, and (2) that AMPK is central to this effect. In these cells, furanodiene (as opposed to doxorubicin) noticeably affects the phosphorylation of AMPK and AMPK pathway intermediates, ACLY and GSK-3β, suggesting that furanodiene reduces mitochondrial function and cellular ATP levels by way of AMPK activation. Finally, we find that the cell permeable agent and AMPK inhibitor compound C (CC), abolishes furanodiene-induced anticancer activity in these MCF-7/DOXR cells, with regard to cell growth inhibition and AMPK activation; in contrast, AICAR (5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside, acadesine), an AMPK activator, augments furanodiene-induced anticancer activity. Furthermore, specific knockdown of AMPK in MCF-7/DOXR cells protects these cells from furanodiene-induced cell death. Taken together, these findings suggest that AMPK and its pathway intermediates are promising therapeutic targets for treating chemoresistant breast cancer, and that furanodiene may be an important chemical agent incorporated in next-generation chemotherapy protocols
    corecore