300 research outputs found
Precision preparation of strings of trapped neutral atoms
We have recently demonstrated the creation of regular strings of neutral
caesium atoms in a standing wave optical dipole trap using optical tweezers [Y.
Miroshnychenko et al., Nature, in press (2006)]. The rearrangement is realized
atom-by-atom, extracting an atom and re-inserting it at the desired position
with sub-micrometer resolution. We describe our experimental setup and present
detailed measurements as well as simple analytical models for the resolution of
the extraction process, for the precision of the insertion, and for heating
processes. We compare two different methods of insertion, one of which permits
the placement of two atoms into one optical micropotential. The theoretical
models largely explain our experimental results and allow us to identify the
main limiting factors for the precision and efficiency of the manipulations.
Strategies for future improvements are discussed.Comment: 25 pages, 18 figure
Cold Atom Physics Using Ultra-Thin Optical Fibers: Light-Induced Dipole Forces and Surface Interactions
The strong evanescent field around ultra-thin unclad optical fibers bears a
high potential for detecting, trapping, and manipulating cold atoms.
Introducing such a fiber into a cold atom cloud, we investigate the interaction
of a small number of cold Caesium atoms with the guided fiber mode and with the
fiber surface. Using high resolution spectroscopy, we observe and analyze
light-induced dipole forces, van der Waals interaction, and a significant
enhancement of the spontaneous emission rate of the atoms. The latter can be
assigned to the modification of the vacuum modes by the fiber.Comment: 4 pages, 4 figure
A neutral atom quantum register
We demonstrate the realization of a quantum register using a string of single
neutral atoms which are trapped in an optical dipole trap. The atoms are
selectively and coherently manipulated in a magnetic field gradient using
microwave radiation. Our addressing scheme operates with a high spatial
resolution and qubit rotations on individual atoms are performed with 99%
contrast. In a final read-out operation we analyze each individual atomic
state. Finally, we have measured the coherence time and identified the
predominant dephasing mechanism for our register.Comment: 4 pages, 4 figure
Coherence properties and quantum state transportation in an optical conveyor belt
We have prepared and detected quantum coherences with long dephasing times at
the level of single trapped cesium atoms. Controlled transport by an "optical
conveyor belt" over macroscopic distances preserves the atomic coherence with
slight reduction of coherence time. The limiting dephasing effects are
experimentally identified and are of technical rather than fundamental nature.
We present an analytical model of the reversible and irreversible dephasing
mechanisms. Coherent quantum bit operations along with quantum state transport
open the route towards a "quantum shift register" of individual neutral atoms.Comment: 4 pages, 3 figure
Adiabatic Quantum State Manipulation of Single Trapped Atoms
We use microwave induced adiabatic passages for selective spin flips within a
string of optically trapped individual neutral Cs atoms. We
position-dependently shift the atomic transition frequency with a magnetic
field gradient. To flip the spin of a selected atom, we optically measure its
position and sweep the microwave frequency across its respective resonance
frequency. We analyze the addressing resolution and the experimental robustness
of this scheme. Furthermore, we show that adiabatic spin flips can also be
induced with a fixed microwave frequency by deterministically transporting the
atoms across the position of resonance.Comment: 4 pages, 4 figure
Spontaneous excitation of an accelerated atom: The contributions of vacuum fluctuations and radiation reaction
We consider an atom in interaction with a massless scalar quantum field. We
discuss the structure of the rate of variation of the atomic energy for an
arbitrary stationary motion of the atom through the quantum vacuum. Our main
intention is to identify and to analyze quantitatively the distinct
contributions of vacuum fluctuations and radiation reaction to the spontaneous
excitation of a uniformly accelerated atom in its ground state. This gives an
understanding of the role of the different physical processes underlying the
Unruh effect. The atom's evolution into equilibrium and the Einstein
coefficients for spontaneous excitation and spontaneous emission are
calculated.Comment: 13 pages, KONS-RGKU-94-09, to appear in Phys. Rev.
Quantum Walk in Position Space with Single Optically Trapped Atoms
The quantum walk is the quantum analogue of the well-known random walk, which
forms the basis for models and applications in many realms of science. Its
properties are markedly different from the classical counterpart and might lead
to extensive applications in quantum information science. In our experiment, we
implemented a quantum walk on the line with single neutral atoms by
deterministically delocalizing them over the sites of a one-dimensional
spin-dependent optical lattice. With the use of site-resolved fluorescence
imaging, the final wave function is characterized by local quantum state
tomography, and its spatial coherence is demonstrated. Our system allows the
observation of the quantum-to-classical transition and paves the way for
applications, such as quantum cellular automata.Comment: 7 pages, 4 figure
Nearest-Neighbor Detection of Atoms in a 1D Optical Lattice by Fluorescence Imaging
We overcome the diffraction limit in fluorescence imaging of neutral atoms in
a sparsely filled one-dimensional optical lattice. At a periodicity of 433 nm,
we reliably infer the separation of two atoms down to nearest neighbors. We
observe light induced losses of atoms occupying the same lattice site, while
for atoms in adjacent lattice sites, no losses due to light induced
interactions occur. Our method points towards characterization of correlated
quantum states in optical lattice systems with filling factors of up to one
atom per lattice site.Comment: 4 pages, 4 figure
Influence of the state of light on the optically induced interparticle interaction
A general expression for the energy of interparticle interaction induced by an arbitrary mode of light is determined using quantum electrodynamics, and it is shown that the Casimir-Polder potential is included within this quantum result. Equations are also derived for the corresponding coupling induced by multimode number states of light, and the dependence of the pair energy on the Poynting vector and polarization state is determined. Attention is then focused on the interactions between particles trapped in counterpropagating coherent beams, both with and without interference, and it is shown that the results afford insights into the multiparticle structures that can be optically fabricated with counterpropagating input. Brief consideration is also given to the effect of squeezing the optical coherent state. Extending previous studies of optical binding in Laguerre-Gaussian beams, results are given for the case of particles trapped at radially different locations within the beam structure. Finally, consideration is given to interparticle interactions induced by broadband light, and it is shown how the length of optically fabricated particle chains can be controlled by the use of wavelength filters
- …